module Part1.Quicksort.Permutation //Some auxiliary definitions to make this a standalone example let rec length #a (l:list a) : nat = match l with | [] -> 0 | _ :: tl -> 1 + length tl let rec append #a (l1 l2:list a) : list a = match l1 with | [] -> l2 | hd :: tl -> hd :: append tl l2 let total_order (#a:Type) (f: (a -> a -> bool)) = (forall a. f a a) (* reflexivity *) /\ (forall a1 a2. (f a1 a2 /\ a1=!=a2) <==> not (f a2 a1)) (* anti-symmetry *) /\ (forall a1 a2 a3. f a1 a2 /\ f a2 a3 ==> f a1 a3) (* transitivity *) /\ (forall a1 a2. f a1 a2 \/ f a2 a1) (* totality *) let total_order_t (a:Type) = f:(a -> a -> bool) { total_order f } let rec sorted #a (f:total_order_t a) (l:list a) : bool = match l with | [] -> true | [x] -> true | x :: y :: xs -> f x y && sorted f (y :: xs) //SNIPPET_START: count permutation let rec count (#a:eqtype) (x:a) (l:list a) : nat = match l with | hd::tl -> (if hd = x then 1 else 0) + count x tl | [] -> 0 let mem (#a:eqtype) (i:a) (l:list a) : bool = count i l > 0 let is_permutation (#a:eqtype) (l m:list a) = forall x. count x l = count x m let rec append_count (#t:eqtype) (l1 l2:list t) : Lemma (ensures (forall a. count a (append l1 l2) = (count a l1 + count a l2))) = match l1 with | [] -> () | hd::tl -> append_count tl l2 //SNIPPET_END: count permutation let rec partition (#a:Type) (f:a -> bool) (l:list a) : x:(list a & list a) { length (fst x) + length (snd x) = length l } = match l with | [] -> [], [] | hd::tl -> let l1, l2 = partition f tl in if f hd then hd::l1, l2 else l1, hd::l2 let rec sort #a (f:total_order_t a) (l:list a) : Tot (list a) (decreases (length l)) = match l with | [] -> [] | pivot :: tl -> let hi, lo = partition (f pivot) tl in append (sort f lo) (pivot :: sort f hi) let rec partition_mem_permutation (#a:eqtype) (f:(a -> bool)) (l:list a) : Lemma (let l1, l2 = partition f l in (forall x. mem x l1 ==> f x) /\ (forall x. mem x l2 ==> not (f x)) /\ (is_permutation l (append l1 l2))) = admit() let rec sorted_concat (#a:eqtype) (f:total_order_t a) (l1:list a{sorted f l1}) (l2:list a{sorted f l2}) (pivot:a) : Lemma (requires (forall y. mem y l1 ==> not (f pivot y)) /\ (forall y. mem y l2 ==> f pivot y)) (ensures sorted f (append l1 (pivot :: l2))) = match l1 with | [] -> () | hd :: tl -> sorted_concat f tl l2 pivot let permutation_app_lemma (#a:eqtype) (hd:a) (tl:list a) (l1:list a) (l2:list a) : Lemma (requires (is_permutation tl (append l1 l2))) (ensures (is_permutation (hd::tl) (append l1 (hd::l2)))) = admit() let rec sort_correct (#a:eqtype) (f:total_order_t a) (l:list a) : Lemma (ensures ( sorted f (sort f l) /\ is_permutation l (sort f l))) (decreases (length l)) = admit() let rec sort_intrinsic (#a:eqtype) (f:total_order_t a) (l:list a) : Tot (m:list a { sorted f m /\ is_permutation l m }) (decreases (length l)) = admit()