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This chapter is heavily under construction

Tactics and Metaprogramming with Meta-F*

So far, we have mostly relied on the SMT solver to do proofs in F*.
This works rather well: we got
this far, after all! However, sometimes,
the SMT solver is really not able to complete our proof, or
takes too
long to do so, or is not robust (i.e. works or fails due to seemingly
insignificant changes).

This is what Meta-F* was originally designed for. It provides the
programmer with more control on
how to break down a proof and guide the
SMT solver through the proper path via using tactics.
Moreover, a
proof can be fully completed within Meta-F* without using the SMT solver
at all! This
is the usual approach taken in other proof assistants (such
as Lean, Coq, or Agda), but it’s not the
preferred route.

Meta-F* also allows for metaprogramming, i.e. generating programs
(or types, or proofs …)
automatically. This should not be surprinsing
to anyone already familiar with proof assistants and
the Curry-Howard
correspondence. There are however some slight differences between the
two
approaches, and more so in F*, so we will first look at automating
proofs (i.e. tactics), and then turn
to metaprogramming (though we use
the generic name “metaprogram” for tactics as well).

In summary, when the SMT “just works”, then we usually do not bother
writing tactics, but we still
have the ability to roll up our sleeves
and write explicit proofs.

Speaking of rolling up our sleeves, let us do just that.

Decorating assertions with tactics

As you know already, F* verifies programs by computing verification
conditions (VCs) and calling an
SMT solver (Z3) to prove them. Most
simple proof obligations are handled completely automatically
by Z3,
and for more complex statements we can help the solver find a proof via
lemma calls and
intermediate assertions. Even when using lemma calls and
assertions, the VC for a definition is sent
to Z3 in one single piece.
This “monolithic” style of proof can become unwieldy rapidly,
particularly
when the solver is being pushed to its limits.

The first ability Meta-F* provides is allowing to attach tag specific
tactics of assertions. These
tactics operate on the “goal” that we want to
prove, and can “massage” the assertion by simplifying
it, splitting
into more parts, tweaking particular SMT options, etc.
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For instance, let us take the the following example, where we want to
guarantee that pow2 x  is
less than one million given that x  is
at most 19 . One way of going about this proof is by noting
that
 pow2  is an increasing function, and that pow2 19  is less than
one million, so we try to write
something like this:

let pow2_bound_19 (x:nat{x <= 19}) : Lemma (pow2 x < 1000000) =

  assert (forall (x y : nat). x <= y ==> pow2 x <= pow2 y);

  assert (pow2 19 ==  524288);

  assert (pow2 x < 1000000);

  ()


Sadly, this doesn’t work. First of all, Z3 cannot automatically
prove that pow2  is increasing, but that
is to be expected.
We could prove this by a straightforward induction. However, we
only need this
fact for x  and 19 , so we can simply call
 FStar.Math.Lemmas.pow2_le_compat  from the library:

let pow2_bound_19' (x:nat{x <= 19}) : Lemma (pow2 x < 1000000) =

  FStar.Math.Lemmas.pow2_le_compat 19 x;

  assert (pow2 19 == 524288);

  assert (pow2 x < 1000000);

  ()


Now, the second assertion fails. Z3 will not, with the default fuel
limits, unfold pow2 enough times
to compute pow2 19  precisely. Here
we will use our first call into Meta-F*: via the by  keyword, we
can attach a tactic to an assertion. In this case, we’ll ask Meta-F*
to compute()  over the goal,
simplifying as much as it can via F*’s
normalizer, like this:

let pow2_bound_19'' (x:nat{x <= 19}) : Lemma (pow2 x < 1000000) =

  FStar.Math.Lemmas.pow2_le_compat 19 x;

  assert (pow2 19 == 524288) by compute ();

  assert (pow2 x < 1000000);

  ()


Now the lemma verifies! Meta-F* reduced the proof obligation into a
trivial equality. Crucially,
however, the pow2 19 == 524288  shape is
kept as-is in the postcondition of the assertion, so we
can make use of
it! If we were just to rewrite the assertion into 524288 == 524288 
that would not
be useful at all.

How can we know what Meta-F* is doing? We can use the dump  tactic to
print the state of the
proof after the call to compute() .



let pow2_bound_19''' (x:nat{x <= 19}) : Lemma (pow2 x < 1000000) =

  FStar.Math.Lemmas.pow2_le_compat 19 x;

  assert (pow2 19 == 524288) by (compute (); dump "after compute");

  assert (pow2 x < 1000000);

  ()


With this version, you should see something like:

Goal 1/1

x: x: nat{x < 20}

p: pure_post unit

uu___: forall (pure_result: unit). pow2 x < 1000000 ==> p pure_result

pure_result: unit

uu___'0: pow2 x <= pow2 19

--------------------------------------------------------------------------------

squash (524288 == 524288)

(*?u144*) _


as output from F* (or in the goals buffer if you are using emacs).
The print  primitive can also be
useful.

A “goal” is some proof obligation that is yet to be solved. Meta-F*
allows you to capture goals (e.g.
via assert..by ), modify them (such
as with compute ), and even to completely solve them. In this
case, we
can solve the goal (without Z3!) by calling trivial() , a helper
tactic that discharges trivial
goals (such as trivial equalities).

let pow2_bound_19'''' (x:nat{x <= 19}) : Lemma (pow2 x < 1000000) =

  FStar.Math.Lemmas.pow2_le_compat 19 x;

  assert (pow2 19 == 524288) by (

    compute ();

    trivial ();

    qed ()

   );

  assert (pow2 x < 1000000);

  ()


If you dump  the state just after the trivial()  call, you should
see no more goals remain (this is
what qed()  checks).

 Note

Meta-F* does not yet allow an interactive style of proof, and hence
we need to re-check the
entire proof after every edit. This will be
improved upon.



There is still the “rest” of the proof, namely that pow2 x < 1000000 
given the hypothesis and the
fact that the assertion holds. We call
this skeleton of the proof, and it is (by default) not handled by
Meta-F*. In general, we only use tactics on those assertions that are
particularly hard for the SMT
solver, but leave all the rest to it.

The Tac  effect

What, concretely, are tactics? So far we’ve written a few simple ones,
without too much attention
to their structure.

Tactics and metaprograms in F* are really just F* terms, but in a
particular effect, namely Tac . To
construct interesting
metaprograms, we have to use the set of primitives provided by Meta-F*.
Their
full list is in the FStar.Tactics.Builtins  module.
So far, we have actually not used any primitive
directly, but
only derived metaprograms present in the standard library.

Internally, Tac  is implemented via a combination of 1) a state
monad, over a proofstate , 2)
exceptions and 3) divergence.
The state monad is used to implicitly carry the proofstate, without
us
manually having to handle all goals explicitly. Exceptions
are a useful way of doing error handling.
Any declared exception
can be raise ’d within a metaprogram, and the try..with 
construct works
exactly as for normal programs. There are also
 fail , catch  and recover  primitives.

Metaprograms cannot be run directly. This is needed to retain the
soundness of pure computations,
in the same way that stateful and
exception-raising computations are isolated from the Pure

fragment
(and from each other!). Metaprograms can only be used where F* expects
them , such as
in an assert..by  construct. Here, F* will run the
metaprogram on an initial proofstate consisting
(usually) of a single
goal, and allow the metaprogram to modify it.

To guarantee soundness, i.e. that metaprograms do not prove false
things, all of the primitives are
designed to perform small and correct
modifications of the goals. Any metaprogram constructed
from them cannot
do anything to the proofstate (which is abstract) except modifying it
via the
primitives.

Having divergence as part of the Tac  effect may seem a bit odd,
since allowing for diverging terms
usually implies that one can form a
proof of false, via a non-well-founded recursion. However, we
should
note that this possible divergence happens at the meta level. If we
call a divergent tactic, F*
will loop forever waiting for it to finish,
never actually accepting the assertion being checked.

As you know, F* already has exceptions and divergence. All Dv  and
 Ex  functions can readily be
used in Meta-F* metaprograms, as well as
all Tot  and Pure  functions. For instance, you can use
all of the
 FStar.List.Tot  module if your metaprogram uses lists.

Goals



Essentially, a Meta-F* tactic manipulates a proofstate, which is
essentially a set of goals. Tactic
primitives usually work on the
goals, for example by simplifying (like compute() ) or by breaking
them down into smaller sub-goals.

When proving assertions, all of our goals will be of the shape squash
phi , where phi  is some
logical formula we must prove. One way to
break down a goal into subparts is by using the mapply

tactic, which
attempts to prove the goal by instantiating the given lemma or function,
perhaps
adding subgoals for the hypothesis and arguments of the lemma.
This “working backwards” style is
very common in tactics frameworks.

For instance, we could have proved the assertion that pow2 x <= pow2 19 
in the following way:

assert (pow2 x <= pow2 19) by (mapply (`FStar.Math.Lemmas.pow2_le_compat));


This reduces the proof of pow2 x <= pow2 19  to x <= 19  (the
precondition of the lemma), which is
trivially provably by Z3 in this
context. Note that we do not have to provide the arguments to the
lemma:
they are inferred by F* through unification. In a nutshell, this means
F* finds there is an
obvious instantiation of the arguments to make the
postcondition of the lemma and the current
assertion coincide. When some
argument is not found via unification, Meta-F* will present a new
goal
for it.

This style of proof is more surgical than the one above, since the
proof that pow2 x <= pow2 19

does not “leak” into the rest of the
function. If the proof of this assertion required several auxiliary
lemmas, or a tweak to the solver’s options, etc, this kind of style can
pay off in robustness.

Most tactics works on the current goal, which is the first one in
the proofstate. When a tactic
reduces a goal g  into g1,...,gn , the
new g1,..,gn  will (usually) be added to the beginning of the
list of
goals.

In the following simplified example, we are looking to prove s  from
 p  given some lemmas. The
first thing we do is apply the qr_s  lemma,
which gives us two subgoals, for q  and r  respectively.
We then need
proceed to solve the first goal for q . In order to isolate the proofs
of both goals, we
can focus  on the current goal making all others
temporarily invisible. To prove q , we then just
use the p_q  lemma and
obtain a subgoal for p . This one we will just just leave to the SMT
solver,
hence we call smt()  to move it to the list of SMT goals. We
prove r  similarly, using p_r .



assume val p : prop

assume val q : prop

assume val r : prop

assume val s : prop



assume val p_q : unit -> Lemma (requires p) (ensures q)

assume val p_q : squash p -> Lemma r

assume val qr_s : unit -> Lemma (q ==> r ==> s)



let test () : Lemma (requires p) (ensures s) =

  assert s by (

    mapply (`qr_s);

    focus (fun () ->

      mapply (`p_q);

      smt());

    focus (fun () ->

      mapply (`p_r);

      smt());

    ()

  )


Once this tactic runs, we are left with SMT goals to prove p , which Z3
discharges immediately.

Note that mapply  works with lemmas that ensure an implication, or
that have a precondition
( requires / ensures ), and even those that a
squashed proof as argument. Internally, mapply  is
implemented via the
 apply_lemma  and apply  primitives, but ideally you should not need to
use
them directly.

Note, also, that the proofs of each part are completely isolated from
each other. It is also possible
to prove p_gives_s  lemma by calling
the sublemmas directly, and/or adding SMT patterns. While
that style of
proof works, it can quickly become unwieldy.

Quotations

In the last few examples, you might have noted the backticks, such as
in
(`FStar.Math.Lemmas.pow2_le_compat) . This is a quotation: it
represents the syntax for this lemma

instead of the lemma itself. It
is called a quotation since the idea is analogous to the word “sun”
being syntax representing the sun.

A quotation always has type term , an abstract type representing
the AST of F*.

Meta-F* also provides antiquotations, which are a convenient way of
modifying an existing term.
For instance, if t  is a term, we can write
 `(1 + `#t)  to form the syntax of “adding 1” to t . The
part inside
the antiquotation ( `# ) can be anything of type term .

Many metaprogramming primitives, however, do take a term  as an
argument to use it in proof, like
apply_lemma  does. In this case,
the primitives will will typecheck the term in order to use it proofs

(though other primitives, such as term_to_string , won’t typecheck
anything).



We will see ahead that quotations are just a convenient way of
constructing syntax, instead of
doing it step by step via pack .

Basic logic

Meta-F* provides some predefined tactics to handle “logical” goals.

For instance, to prove an implication p ==> q , we can “introduce” the
hypothesis via
implies_intro  to obtain instead a goal for q  in a
context that assumes p .

Other basic logical tactics include:

forall_intro : for a goal forall x. p , introduce a fresh x  into
the context and present a
goal for p .
l_intros : introduce both implications and foralls as much as
possible.
split : split a conjunction ( p /\ q ) into two goals
left / right : prove a disjunction p \/ q  by proving p  or q

assumption : prove the goal from a hypothesis in the context.
pose_lemma : given a term t  representing a lemma call, add its
postcondition to the context.

If the lemma has a precondition, it is
presented as a separate goal.

(For experts: in Coq and other provers, this tactic is simply called
 intro  and creates a lambda
abstraction. In F* this is slightly more
contrived due to squashed types, hence the need for an
implies_intro 
different from the intro , explained ahead, that introduces a binder.)

See the FStar.Tactics.Logic  module for more.

Normalizing and unfolding

We have previously seen compute() , which blasts a goal with F*’s
normalizer to reduce it into a
normal form. We sometimes need a
bit more control than that, and hence there are several tactics
to
normalize goals in different ways. Most of them are immplemented via a
few configurable
primitives (you can look up their definitions in the
standard library!)

compute() : calls the normalizer with almost all steps enabled
simpl() : simplifies logical operations (e.g. reduces p /\ True 
to p ).
whnf()  (short for “weak head normal form”): reduces the goal
until its “head” is evident.
unfold_def `t : unfolds the definition of the name t  in the goal,
fully normalizing its body.
trivial() : if the goal is trivial after normalization and simplification,
solve it.

The norm  primitive provides fine-grained control. Its type is list
norm_step -> Tac unit . The full
list of norm_step  s can be found in
the FStar.Pervasives  module, and it is the same one available
for the
 norm  marker in Pervasives  (beware of the name clash!).



Inspecting and building syntax

As part of automating proofs, we often need to inspect the syntax of
the goal and the hypotheses
in the context to decide what to do. For
instance, instead of blindly trying to apply the split  tactic
(and
recovering if it fails), we could instead look at the shape of the
goal and apply split  only if
the goal has the shape p1 /\ p2 .

Note: inspecting syntax is, perhaps obviously, not something we can
just do everywhere. If a
function was allowed to inspect the syntax of
its argument, it could behave differently on 1+2  and
3 , which is
of course bad! So, for the most part, we cannot simply turn a value of
type a  into a its

syntax. Hence, quotations are static, they
simply represent the syntax of a term, cannot turn values
into terms.
There is a more powerful mechanism of dynamic quotations that will
be explained later,
but suffice it to say for now that this can only be done
in the Tac  effect.

As an example, the cur_goal()  tactic will return a value of type typ 
(an alias for term )
representing the syntax of the current goal.

The term  type is abstract: it has no structure in of itself. Think
of it as an opaque “box” containing a
term inside. A priori, all that
can be done with a term  is pass it to primitives that expect one, such
as tc  to type-check it norm_term  to normalize it. But none of those
give us full, programatic
access to the structure of the term.

That’s where the term_view  comes in: following a classic idea in
programming languages, there is
function called inspect  that turns
a term  into a term_view . The term_view  type resembles an
AST, but
crucially is not recursive: it has term  s (and not term_view  s)
where the subterms are.

Part of the term_view  type.

 noeq

 type term_view =

   | Tv_FVar   : v:fv -> term_view

   | Tv_App    : hd:term -> a:argv -> term_view

   | Tv_Abs    : bv:binder -> body:term -> term_view
   | Tv_Arrow  : bv:binder -> c:comp -> term_view

   ...


The inspect  primitves “peels away” one level of the abstraction
layer, giving access to the top-
level shape of the term.

The Tv_FVar  node above represents (an ocurrence of) a global name.
The fv  type is also abstract,
and can be viewed as a name  (which
is just list string ) via inspect_fv .



For instance, if we were to inspect `qr_s  (which we used above)
we would obtain a Tv_FVar v ,
where inspect_fv v  is something
like ["Path"; "To"; "Module"; "qr_s"] , that is, an “exploded”
representation of the fully-qualified name Path.To.Module.qr-s .

Every syntactic construct (terms, free variables, bound variables,
binders, computation types, etc) is
modelled abstract like term  and
 fv , and have corresponding inspection functions. A list can be
found
in FStar.Reflection.Builtins .

If the inspected term is an application, inspect  will return a
 Tv_App f a  node. Here f  is a term ,
so if we want to know its
structure we must recursively call inspect  on it. The a  part
is an
argument, consisting of a term  and an argument qualifier
( aqualv ). The qualifier specifies if the
application is implicit or
explicit.

Of course, in the case of a nested application such as f x y , this
is nested as (f x) y , so
inspecting it would return a Tv_App 
node containing f x  and y  (with a Q_Explicit  qualifier).
There are some helper functions defined to make inspecting applications
easier, like collect_app ,
which decompose a term into its “head” and
all of the arguments the head is applied to.

Now, kwowing this, we would then like a function to check if the goal is
a conjunction.
Naively, we
need to inspect the goal to check that it is of the shape
 squash ((/\) a1 a2) , that is, an application
with two arguments
where the head is the symbol for a conjunction, i.e. (/\) . This can
already be
done with the term_view , but is quite inconvenient due to
there being too much information in it.

Meta-F* therefore provides another type, formula , to represent logical
formulas more directly.
Hence it suffices for us to call term_as_formula 
and match on the result, like so:

(* Check if a given term is a conjunction, via term_as_formula. *)

let isconj_t (t:term) : Tac bool =

  match term_as_formula t with

  | And _ _ -> true

  | _ -> false



(* Check if the goal is a conjunction. *)
let isconj () : Tac bool = isconj_t (cur_goal ())


The term_as_formula  function, and all others that work on syntax,
are defined in “userspace” (that
is, as library tactics/metaprograms) by
using inspect .

Part of the formula  type.



noeq

type formula =

  | True_  : formula

  | False_ : formula

  | And    : term -> term -> formula

  | Or     : term -> term -> formula

  | Not    : term -> formula

  | Implies: term -> term -> formula

  | Forall : bv -> term -> formula

  ...


 Note

For experts: F* terms are (internally) represented with a
locally-nameless representation,
meaning that variables do not have
a name under binders, but a de Bruijn index instead. While
this has
many advantages, it is likely to be counterproductive when doing
tactics and
metaprogramming, hence inspect  opens variables when
it traverses a binder, transforming the
term into a fully-named
representation. This is why inspect  it is effectul: it requires
freshness
to avoid name clashses. If you prefer to work with a
locally-nameless representation, and avoid
the effect label, you can
use inspect_ln  instead (which will return Tv_BVar  nodes instead
of
Tv_Var  ones).

Dually, a term_view  can be transformed into a term  via the
 pack  primitive, in order to build the
syntax of any term. However,
it is usually more comfortable to use antiquotations (see above) for
building terms.

Usual gotchas

The smt  tactic does not immediately call the SMT solver. It merely
places the current goal into
the “SMT Goal” list, all of which are sent
to the solver when the tactic invocation finishes. If any
of these fail,
there is currently no way to “try again”.
If a tactic is natively compiled and loaded as a plugin, editing
its source file may not have any
effect (it depends on the build
system). You should recompile the tactic, or just delete its
object
file to run it via the interpreter temporarily.

Coming soon

Metaprogramming
Meta arguments and typeclasses
Plugins (efficient tactics and metaprograms, --codegen Plugin  and --load )
Tweaking the SMT options
Automated coercions inspect/pack
e <: C by ...

Tactics can be used as steps of calc proofs.
Solving implicits (Steel)




