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With roots in purely functional programming, dependently typed languages have grown to also provide
embedded DSLs for imperative programming, e.g., at the level of abstraction of C or assembly. These imperative
DSLs have been used to produce high-assurance & high-performance software deployed in many production
systems. Yet, to date, nearly all such deployed software is sequential, having been developed in program
logics that do not support concurrency. We seek to broaden the scope of dependently typed programming by
providing embedded DSLs for low-level, concurrent software, with proofs in concurrent separation logic.

PulseCore is a dependently typed concurrent separation logic embedded in F★. It provides many features
of a modern separation logic, including dynamically allocated invariants and forms of higher-order ghost
state, based on partial commutative monoids, all backed by a mechanized, foundational proof of soundness.
Being shallowly embedded in F★, the PulseCore logic applies to F★ programs itself, with the full power of
dependent types available in programs, specifications, and proofs. The key technical innovation is the use of
stratified propositions, based on a hierarchy of heaps, one for each universe level. This stratified model allows
the propositions of a given level to be stored as objects or turned into invariants at the next level, avoiding the
circularity of storing heap predicates in heaps.

We describe both the formal model and the design of user-facing libraries that enable working with stratified
propositions. In particular, through the use of refinement types, many common uses of PulseCore can ignore
the stratification, while more complex uses benefit from diverse styles of specification and proof automation.
We evaluate PulseCore by developing various concurrent programs, including synchronization primitives
such as dynamically allocated locks and barriers. We also report on our experience using it to verify an
implementation of an industry-standard secure boot protocol.

1 INTRODUCTION

Given the difficulty of proving the correctness of existing code, some people prefer to design and
implement provably correct programs from scratch in proof-oriented languages, programming
languages that are geared towards formal proof. A line of work in this direction is to use dependently
typed languages, for their expressive power and proof-engineering capabilities, and to embed within
them various domain-specific languages (DSLs) that provide Hoare logics for program proof. This
approach has been successful at industrial scale, notably in F★ (Swamy et al. 2016), where several
embedded (DSLs) (Protzenko et al. 2017; Ramananandro et al. 2019) have been used to develop
high-assurance C code deployed in the Windows kernel, Microsoft Azure, Linux, Firefox, and other
production systems (Protzenko et al. 2020; Swamy et al. 2022; Zinzindohoué et al. 2017). However,
these DSLs and their accompanying logics only provide sequential code, limiting their applicability.

We seek to develop low-level, concurrent programs in a dependently typed language, with proofs
in concurrent separation logic (CSL) (O’Hearn 2004; Reynolds 2002). Two lines of prior research in
this direction are prominent: Iris (Jung et al. 2018) and Hoare Type Theory & FCSL (Nanevski et al.
2008, 2014, 2019). While Iris is highly expressive, it provides a non-dependently-typed program
logic which can be applied to a deeply embedded programming language of one’s choosing. Put
another way, while Iris is foundationally developed within Coq, its logic is not applicable to Coq
∗Work done while at Microsoft Research, USA
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programs itself. Hoare Type Theory (HTT) and FCSL, in contrast, shallowly embed a CSL in Coq
and for Coq programs, and are closer to our goal. However, they do not offer a few key features
from Iris, notably lacking support for dynamically allocated invariants and higher-order ghost state,
e.g., one cannot program a dynamically allocated mutex in HTT or FCSL.
The closest prior work to ours is SteelCore (Swamy et al. 2020), a CSL shallowly embedded

in F★, with support for dynamically allocated invariants. However, SteelCore’s model relies on a
non-standard axiom for monotonic state (Ahman et al. 2018) which is unsound when combined
with certain commonly used classical axioms. CSL is subtle and problems with formalizations of
CSLs have been reported and corrected by others in the past too (Dodds et al. 2016; Jung et al.
2019). To put to rest any soundness concerns, we seek a model for a dependently typed CSL with
higher-order ghost state and dynamically allocated invariants mechanized in a proof assistant
without any additional assumptions.

1.1 PulseCore: A Dependently Typed Stratified Separation Logic

A key difficulty in giving a model to CSL with higher-order ghost state and invariants is that
one needs to resolve the inherent circularity of “storing” heap-predicates in the heap. In Iris, the
approach is to interpret separation logic propositions in a custom category and to use step-indexing
to break the circularity. The resulting logic in Iris is impredicative and highly expressive; however,
as far as we are aware, Iris’ semantics is not applicable to a dependently typed separation logic.
Our main observation is that there is another way to break the circularity, without requiring

custom categories and step indexing, while obtaining a dependently typed separation logic, though
it is only predicative—we explain this limitation shortly. The main idea is to stratify the heap into
layers that correspond to the levels of the universe hierarchy of the underlying type theory. Heap
predicates that speak about a given layer of a heap cannot be stored in that layer of the heap (that
would be circular), but they can be stored in the next layer (or above).

Concrete
obj ∈ u#0

Ghost
obj ∈ u#0

heap u#0: Type u#1
slprop₁: Type u#1

Concrete
obj ∈ u#1

Ghost
obj ∈ u#1

Invariants
× × …

heap u#1: Type u#2
slprop₂: Type u#2

Fig. 1. PulseCore’s heap: base case and one extension

Developing this idea, we present PulseCore,
a new dependently typed, concurrent separa-
tion logic shallowly embedded in F★. The core
logic of F★ is an (extensional) type theory with
a countably infinite hierarchy of predicative
universes, with universe polymorphism—such
features are present in other dependently typed
languages, and we believe the core elements of
our model could be developed in other tools too.
Our construction works by identifying an ab-
stract signature slsig u#𝛼 , for a separation logic
at a given universe level u#𝛼 . This signature includes, among other things, the type of heaps,
predicates, and invariants and various laws that they are expected to satisfy. The central part of the
construction shows how to extend a signature from a given level u#𝛼 to the next level u#(𝛼+1). The
diagram alongside is a sketch of the construction, focusing on heaps, predicates, and invariants,
showing the base case and one step of extension. Each heap layer is composed of a concrete and
a ghost compartment—the latter is used to store “ghost” objects that are for specification and
proof purposes only. Among the ghost objects are invariants, predicates about the heap that are
maintained by every step of program execution. For the base case, invariants are degenerate. A heap
layer is indexed by a universe level. For example, heap u#𝛼 can store objects that reside in Type u#𝛼 .
Separation logic propositions on heap u#𝛼 , written slprop𝛼+1, reside in universe Type u#(𝛼+1)—so they
cannot be stored in heap u#𝛼 . However, the next heap layer, heap u#(𝛼+1), is a product of heap u#𝛼
with concrete and ghost compartments at the next universe level—so, a proposition slprop𝛼+1 can be
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stored in a heap u#(𝛼+1). We show that our construction generalizes to an arbitrary number of layers
by proving that any heap-like structure can be extended with a layer in the next universe, deriving
a logic over the extended product of heaps. The separation logic propositions of this derived logic
can be stored in its (combined) heap, except for those at the topmost level.

Dynamically allocated invariants. The most important feature of a storable proposition is that it
can be turned into an invariant. That is, a p:slprop𝛼 can be stored in a heap𝛼 as a named invariant and
described using the assertion inv𝛼 i p : slprop𝛼+1, where i is a name. Dynamic allocation of invariants
enables developing modular proofs of core libraries, including those that provide synchronization
primitives like locks and barriers. As usual, invariants can be “opened” (i.e., used and restored) in
computations consisting of no more than a single, physically atomic step. However, the inv𝛼 i p

proposition is not itself storable in a heap𝛼 , i.e., invariants in PulseCore are not impredicative, in
that one cannot construct a resource of the form inv𝛼 i (inv𝛼 j p). However, each heap layer provides
its own notion of invariant. So, one can form nested invariants such as inv𝛼+1 i (inv𝛼 j p), allocating
an invariant at layer 𝛼+1 that mentions an invariant at layer 𝛼 .
To streamline working with stratified propositions, we show how to structure them using

refinement types that define isomorphisms between propositions at different layers. The result is
that although the logic is stratified, many common uses can ignore the stratification, and where
stratification is relevant, SMT-based proof automation shields the user from a lot of the complexity.

1.2 PulseCore at Work

PulseCore is intended as the semantic foundation for Pulse, a surface language for programming
and proving in CSL implemented as an F★ compiler plugin. The design and implementation of the
Pulse plugin is beyond the scope of this paper, though our examples and libraries use Pulse to
demonstrate the usefulness of the PulseCore program logic.
While the PulseCore model and related libraries are proven sound for an arbitrary number

of heap layers, we instantiate the model with 4 heap levels, by repeating the heap extension
construction 3 times, for use with the Pulse plugin. The number 4 is arbitrary, but as discussed in
§4, we find that all four levels are useful, and more levels could be easily added, if necessary.
We illustrate the logic at work by using it to program libraries that combine features such as

invariants and higher-order ghost state. We also use PulseCore to verify an implementation of
the DICE Protection Environment (DPE) (Trusted Computing Group 2023), an industry standard
secure boot protocol service. DPE uses Pulse in an end-to-end concurrency-capable application,
providing a real-world test of the expressiveness and usability of the logic.

1.3 Summary of Contributions

In summary, we offer the following contributions:
• PulseCore: A new foundational semantics for a dependently typed concurrent separation logic,
making use of a stratified heap to support dynamically allocated invariants and storable propositions
in a predicative setting.
• The design of proof-oriented libraries that structure and ease the use of stratified propositions
using refinement types, typeclasses, and dependently typed generic programming.
• An evaluation of PulseCore demonstrating its expressiveness and limits, on examples such as
dynamic locks and barriers, that have previously been proven in impredicative logics.
• An implementation of DPE in Pulse, including a formalization of its top-level API, with a proof
that it respects a state machine specification while serving multiple concurrent sessions.

All our code is open source and mechanically checked by F★, and available at https://github.com/
FStarLang/pulse.

https://github.com/FStarLang/pulse
https://github.com/FStarLang/pulse
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2 PULSECORE: FROM A USER’S PERSPECTIVE

We present PulseCore using Pulse code to illustrate its main features, aiming to give the reader
a flavor of the program logic before we formalize it in the next section. We only present what
is needed to verify a simple spin lock, deferring more advanced features until later. We present
background on F★ as we go.

At its core, F★ is a purely functional language, though we aim to write shared memory concurrent
programs in it. We encode concurrency in F★ by representing a program as a forest of infinitely
branching trees, one tree for each thread, and where the root of a thread’s tree represents an atomic
step of computation to be executed next. The dynamic semantics is given by an interpreter of these
action-tree forests that non-deterministically interleaves atomic actions from each thread (§3.7).
Since we aim to write potentially non-terminating programs, this interpreter uses F★’s support for
general recursion, encapsulated in an effect of divergence. These semantics provide a formal basis
on which to reason about concurrent programs, though for efficient execution, Pulse programs are
extracted to OCaml, C, or Rust rather than interpreted as trees in F★.

PulseCore provides the corresponding static semantics to reason about the (partial) correctness
of programs executing in our interleaving-of-atomic-actions semantics. As in other concurrent
separation logics, all specifications are interpreted in the context of a program fragment executing
concurrentlywith other (type-correct) threads. Programs operating on shared resources can try do so
in a lock-free manner with atomic operations; or, they may use various libraries for synchronization
built using the underlying primitive atomic operations. The simplest of such libraries is a spin lock,
which enforces mutual exclusion by busy-waiting while trying to atomically compare-and-set a
mutable memory location shared between threads.

2.1 An Interface for a Spin Lock

Consider the following interface to a library implementing a spin lock. This interface uses the
concrete syntax of F★, which is similar to the syntax of OCaml (e.g., val for signatures, let for
definitions, etc.), but with dependent refinement types. We adopt a convention where free variables
in a definition are implicitly bound at the top of the definition, except when we think explicit
binders help with clarity.

val lock : Type u#0
val protects (l:lock) (p:slprop) : slprop

This interface offers an abstract type lock : Type u#0, a type in the lowest universe. The universe
is important: referring back to our stratified heap diagram from Figure 1, universe-0 terms can be
stored in the heap without a problem. So, our locks will storable in the heap.

The interface also offers an abstract predicate protects l p, associating a lock l with a proposition
p. The type slprop, the main type of separation logic propositions in Pulse, corresponds to slprop4
from the Introduction, and is an affine predicate over the entire extended heap—recall that Pulse
instantiates PulseCore with four heap layers, so slprop resides in Type u#4.

The basic slprop connectives include emp, the trivial proposition valid in all heaps, and p ∗∗ q, the
separating conjunction,1 valid when a heap can be split into two disjoint fragments that validate p

and q. As usual, ∗∗ is associative and commutative, where emp is both its left and right unit.
The are four main operations on our simple locks: create, dup, acquire, and release. For this simple

example, we do not support de-allocation of a lock, nor do we prevent double-releases, though our
actual libraries do.

1We use ∗∗ for separating conjunction instead of ∗, to avoid clashes with other uses of ∗, e.g., integer multiplication.
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Create & storable propositions. The syntax below introduces the signature of a stateful function
create, with a single parameter p, a storable proposition. The precondition of create is p; a named
return value l:lock; and a postcondition protects l p.
fn create (p:storable) requires p returns l:lock ensures protects l p

In other words, the create p allocates a lock l, takes ownership of the proposition p, and associates
it with the lock by returning protects l p. Importantly, p is a storable proposition—as we’ll see, under
the covers, implementing the lock allocates p as an invariant, and invariants can only be allocated
for storable propositions.
The definition of the storable type follows the structure of our stratified heap construction.

In particular, when extending a heap, we derive a pair of functions ↑𝛼 : slprop𝛼 → slprop𝛼+1 and
↓𝛼 : slprop𝛼+1 → slprop𝛼 , to convert between the propositions of adjacent heap layers. The type
storable is the restriction of slprop to those elements that are isomorphic to propositions in slprop3,
i.e., storable = p:slprop{ is_storable p } where is_storable = ↑3 (↓3 p) == p. We also define refinements
such as p:slprop{ ↑3 (↑2 (↓2 (↓3 p))) == p}, for propositions isomorphic to slprop2, etc.

The proposition protects l p is not itself storable; as such, this interface does not support allocating
locks that protect other locks, e.g., although protects l1 (protects l0 p) is a well-typed slprop, there is
no way to actually create an instance of this proposition, since create expects a storable argument.

Ghost functions: Duplicating permission on a lock. In this case at least, locks that protect other
locks are not particularly useful, since protects is duplicable, as shown by the signature of dup below.
ghost fn dup (l:lock) requires protects l p ensures protects l p ∗∗ protects l p

The postcondition of dup duplicates the precondition, protects l p. The return type of dup is just
unit: Pulse lets us omit it, instead of having to write returns _:unit.
The ghost keyword indicates that dup l is a ghost function, a key feature of PulseCore: ghost

functions differ from regular stateful functions in that, 1. they always terminate; 2. they do not
read or write any concrete state, though they may read and write ghost fragments of the heap; 3.
they can be used in any context of a Pulse computation, so long as that context does not depend
on the return value. F★ already provides a notion of ghost terms as an effect, guaranteeing to erase
terms with ghost effect when compiling a program, while enforcing that compiled programs cannot
depend on the values of ghost terms. Under the covers, PulseCore ghost functions are just a
particular instantiation of F★ ghost functions, which means they are erased as well.

Acquire & Release. Finally, we have functions to acquire and release locks: acquire l blocks until
the lock becomes available and then returns p; while release l gives up ownership of p to the lock.
fn acquire (l:lock) requires protects l p ensures protects l p ∗∗ p
fn release (l:lock) requires protects l p ∗∗ p ensures protects l p

Unlike ghost functions, regular functions like acquiremay loop forever—PulseCore is a program
logic of partial correctness, where potentially non-terminating computations are modeled using
F★’s effect of divergence.

2.2 Representing a Lock: Invariants

Invariants are named propositions that are valid before and after every step of computation. In
particular, inv i p asserts that p:slprop is an invariant whose name is i, which has the type of invariant
names, iname. The type iname is an erasable type in F★, meaning that invariant names are only
needed for specification and proof purposes—they are irrelevant at runtime.
A lock is just a record containing a mutable reference to a machine word r:ref U32.t and an

invariant name i:iname. The invariant of the lock (lock_inv) states that when the flag r is cleared, the
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lock owns p; otherwise it owns nothing—the proposition r ↦→ v asserts that the reference r points-to
a heap cell containing the value v, and ∃∗ is an existential quantifier for slprop. The protects predicate
states that the invariant name l.i is associated with lock_inv l.r p, whose type states that it is storable
if p is storable—we’ll see why this is important, next.

type lock = { r:ref U32.t; i:iname }
let lock_inv r p : v:slprop { is_storable p =⇒ is_storable v } = ∃∗ v. r ↦→ v ∗∗ (if v=0ul then p else emp)
let protects l p = inv l.i (lock_inv l.r p)

This type of lock_inv illustrates the integration of F★’s refinement types with PulseCore’s
logic. We prove that the ↑ and ↓ maps preserve the structure of propositions, and provide lem-
mas that enable the Z3 SMT solver (de Moura and Bjørner 2008) integrated with F★’s type-
checker to automatically prove, for example, that is_storable p ∧ is_storable q =⇒ is_storable (p ∗∗ q),
and (∀ x. is_storable (p x)) =⇒ is_storable (∃∗ x. p x) etc.

2.3 Creating a Lock: new_invariant

The ghost operation new_invariant p dynamically allocates an invariant, requiring the caller to give
up ownership of p, and gaining instead an invariant inv i p. The inv predicate is qualified to a given
heap layer—Pulse defines inv i p to be inv4 i p.

ghost fn new_invariant (p:storable) requires p returns i:iname ensures inv i p

A key restriction is that the proposition p is storable. Intuitively, referring back to Figure 1, this
means that p can only describe properties of parts of the heap that exclude the highest universe level.
In other words, the p:storable restriction on new_invariant forces a form of predicativity—propositions
that can be turned into invariants exclude invariants themselves.

Allocating a lock. Using new_invariant, the code in Figure 2 shows and implementation and proof
of create in Pulse. Program proofs like this are implemented interactively in Pulse, where the
user queries a VSCode-based development environment for the proof state at each point, adding
the appropriate annotations and advancing through the proof a line of code at a time—a "live"
interactive proof experience similar to recent work by Gruetter et al. (2024). Pulse provides some
proof automation, primarily related to automatic framing, together with support for user-provided
hints for rewriting and folding and unfolding predicates, integrated with F★’s SMT based automation.
Pulse makes different proof-engineering tradeoffs than F★ itself, favoring control over automation,
and producing smaller, targeted SMT queries. This requires the user to be more explicit about some
proof steps such as equational rewriting, that are usually implicit in default F★.
The code is relatively straightforward: we allocate a new ref cell r. Then allocate an invariant,

at which point we need to prove that lock_inv r p is storable, but since p:storable, the refinement
type of lock_inv suffices for the SMT solver to complete the proof. Finally, after a rewrite to change
inv i (lock_inv r p) to inv l.i (lock_inv l.r p), we return a record representing the lock.

2.4 Invariants are Duplicable

Invariants inv i p are duplicable, in the sense that inv i p can be converted to inv i p ∗∗ inv i p, as shown
by dup_invariant below. This is important since it allows invariants to be shared among multiple
threads. Since protects l p is essentially just an invariant, duplicating it is easy:

ghost fn dup_invariant (i:iname) (p:slprop) requires inv i p ensures inv i p ∗∗ inv i p
ghost fn dup l requires protects l p ensures protects l p ∗∗ protects l p
{ unfold protects; dup_invariant _ _; fold protects; fold protects; }
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1 fn create (p:storable) requires p ensures protects l p {
2 let r = alloc 0ul;
3 let i = new_invariant (lock_inv r p);
4 let l = {r;i}; rewrite each r as l.r, i as l.i; l }
5
6 fn release l requires p ∗∗ protects l p
7 ensures protects l p { with_invariants l.i
8 { drop (if _ then _ else _); l.r := 0ul }}

fn rec acquire l requires protects l p

ensures p ∗∗ protects l p {
let retry = with_invariants l.i
returns retry:bool
ensures lock_inv l.r p ∗∗ (if retry then emp else p)
{ let b = cas l.r 0ul 1ul;
if b { false } else { true }};
if retry { acquire l }}

Fig. 2. Implementing and proving create, acquire, and release

2.5 Using Invariants in acquire & release: with_invariant

Once an invariant inv i p is allocated, PulseCore enforces that p is valid before and after every
step of computation in all threads throughout the remainder of the program. For this purpose,
PulseCore distinguishes a class of atomic steps, instructions that execute in a single physical step
on a given computer. For examples, most platforms support several forms of atomic operations,
e.g., atomic reads, writes, or compare-and-swap (CAS) instructions. When proving a program that
is intended to execute on a given platform, one reflects its atomic instructions in PulseCore as
primitive operations with types such as the following—note the atomic keyword.

atomic fn cas (r:ref U32.t) (old v:U32.t)
requires r ↦→ u returns b:bool ensures (if b then r ↦→ v ∗∗ pure (old == u) else r ↦→ u)

The signature above states that cas r old v is an atomic operation on a 32-bit integer reference r,
requiring permission to the reference, r ↦→ u. The atomic operation cas returns a boolean b indicating
whether or not it succeeded: if so, r is updated to contain the new value v while proving that its pre-
vious value u is equal to old; otherwise, r is unchanged. Note, the proposition pure (p:prop) : storable
lifts pure propositions to (storable) propositions.

Atomic computations can be preceded or followed by any number of ghost steps—the resulting
computation is still considered atomic. A key rule of PulseCore, expressed by its with_invariant
combinator, is that an invariant can be opened, i.e., assumed and restored, for a single atomic step, or
zero or more ghost steps. That is, having proved inv i p ∗∗ pre, an atomic computation e can assume
p ∗∗ pre, return a value x:a, and ensure p ∗∗ post x, so long as e only opens invariants whose names
are distinct from i.

Implementing acquire. To explainmore, let’s look atwith_invariants in action in the implementation
of acquire, the tail-recursive function shown at the right of Figure 2. One can also implement it
using Pulse’s support for while-loops, though this tail-recursive implementation is shorter. The
key point to note here is that invariants can be opened for at most one atomic operation, and can
assume lock_inv l.r p in the body of the with_invariants l.i block. So, we do a single cas, and if the cas

succeeded, we know the old value of l.r must have been 0ul; so we have p and can return retry=false;
otherwise, we return retry=true from the block. After the block, if retry is set, we recurse; otherwise,
we have p and we can return. Of course, acquire can loop forever, in case the thread holding the
lock never releases it. Recall, non-atomic, non-ghost computations in PulseCore are only proven
partially correct—they are allowed to loop indefinitely.

Implementing release. Finally, the implementation of release, shown at the bottom left of Figure 2
is simpler. Our goal is to return ownership of the proposition p to the lock, and clear the underlying
flag stored in the lock’s ref cell, using and restoring the invariant in a single atomic step. We open
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the invariant and have lock_inv l.r p ∗∗ p in the block; we unconditionally clear the flag and restore
the lock_inv having returned p to the lock. A quirk is that this simple interface to locks allows
a thread to release a lock even when it is not held, so long as they can prove the proposition p.
So, the drop operation explicitly drops any permission already held by the lock—this is allowed
since PulseCore is an affine separation logic. However, to avoid unintended resource leaks, Pulse
will not implicitly drop resources, and the explicit drop is needed. Our supplement shows a more
sophisticated implementation of locks that forbids such resource leaks.
We hope this conveys a flavor of the PulseCore logic, focusing primarily on its support for

dynamically allocated invariants, storable propositions, and three kinds of computations. PulseCore
provides many other features, including a memory representation based on partial commutative
monoids that allow users to develop custom memory layouts and sharing disciplines; various kinds
of ghost state; and support for derived connectives, all integrated in F★’s dependent type system.
In the next section, we build a formal model for PulseCore that supports all these features.

3 FORMALIZING PULSECORE

Wenow explain our formalmodel of PulseCore by presenting first, an abstract universe-polymorphic
signature of heaps and heap predicates. We then show how to inhabit that signature in two ways.
First, we present a base heap at a chosen universe—this gives a simple separation logic, but with
only a degenerate notion of invariant. Then, we present the essence of our stratified heap construc-
tion, which, for a heap at a given universe, constructs an extended heap at the next universe. The
extension of a heap lifts predicates of the original heap to the extended heap, while making them
storable and allocatable as invariants. Starting from a base heap and iterating heap extension, our
soundness proof for PulseCore applies to an arbitrary number of levels. Finally, we show how to
represent concurrent computations using a kind of indexed free monad, and reason about them
using the PulseCore logic.
Note, our presentation here is slightly simplified from our actual mechanized model—we omit

some technicalities that are overly specific to F★, focusing on the main ideas that should generalize
to other settings. Also, for lack of space, we omit some features related to proving the injectivity of
the association between invariants and their names or their freshness, though our model does have
these features. We also use a slightly more mathematical notation than our actual F★ code. The
formalization is about 15,000 lines of F★ code, which is checkable in about 5 minutes on a modern
laptop using 8 threads, though we expect the proofs to become more compact over time.

3.1 An Abstract Signature of PulseCore Heaps and Heap Predicates

As in many standard models of separation logic (Jensen and Birkedal 2012), a PulseCore predicate
is just an affine predicate over a partial commutative monoid (PCM), as defined by the pcm a type
below from F★’s standard library.

type pcm a = { composable: symrel a; op: (x:a→ y:a{composable x y} → a); one:a;
laws: associative_commutative_unit op one; refine: a→ prop }

There’s perhaps one unusual bit: a pcm a includes a predicate refine that allows one to define
an invariant on the carrier type. PCMs are used in separation logics to describe partial knowledge
of some shared state. For example, one could have PCM to represent partial knowledge of a pair
a & b, with four values Neither, X x, Y y, and Both x y. A thread asserting knowledge of X x expresses
ownership of the first component of the pair, only. However, X x is not a real value stored in memory
representing a pair. The refine predicate allows the PCM designer to enforce that only certain cases
of the PCM carrier can actually occur in memory at runtime, the other cases just being partial
views of the in-memory structure. Others have used refined PCMs to construct non-trivial gadgets
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for spatial and temporal sharing (Arasu et al. 2023), so PulseCore retains this capability. Of course,
one can simply disregard the refine field by setting it to 𝜆 _→⊤.

When x y : a have the type of a carrier of a PCM p:pcm a, we write x .? y for p.composable x y, and
x ⊙ y for p.op x y, and leave the specific PCM p implicit. Our model is defined for an abstract type
heap with a pcm heap structure— for heaps, we write empty for p.one.

Affine predicates are slprops. Affine predicates over PCMs are defined as follows:
let is_affine (p:h→ prop) = ∀ h0 h1. (p h0 ∧ h0 .? h1) =⇒ p (h0 ⊙ h1)
let affine_p = p:(h → prop) { is_affine p }

The type slprop for a given heap h is defined as affine_p h.2 One can define the trivial proposition
emp and the separating conjunction (p ∗∗ q) in a standard way, as shown below, and prove that they
form a commutative monoid over slprop.
let pure p = 𝜆 h→ p let emp = pure ⊤ let ( ∗∗ ) p q h = ∃ h0 h1. h0 .? h1 ∧ h == h0 ⊙ h1 ∧ p h0 ∧ q h1

Memories: Heaps with metadata. Its useful to think of heaps as a map from abstract memory
addresses to heap cells. In addition to this map, modeling the memory of a program may require
some additional metadata—in our instantiation of the model, the metadata contains freshness
counters. We call this type mem where the class memory mem associates with a memory a type of
separable heaps and their predicates, together with a function heap_of : mem→ heap to project a
heap from a memory.
class memory (mem:Type u#a) = { heap: Type u#a; sep: pcm heap; heap_of: mem → heap; }

For a m:memory mem, we write slprop m to mean affine predicates over m.heap. When it is clear
from the context, we simply write slprop. We also write interpret p m to mean p (heap_of m). For
a m:memory mem, we define rmem m, for refined memory, as r:mem{ m.sep.refine (heap_of r) }, i.e.,
memories whose heap satisfies the PCM refinement.
So far, all of what we’ve shown is relatively standard and corresponds to an abstract basis for

a variety of separation logics. We now get to our model of invariants, storable propositions, and
erasure—three central notions in PulseCore.

Invariants. Recall from the previous section that invariants in Pulse are named propositions,
inv i p, where an abstract name i:iname is associated with proposition p:slprop. The class below
provides the iname type (in universe u#0, so invariant names can be stored in the heap), and the
invariant former inv. The predicate iname_ok i m is a weaker form of inv i p—it states only that the
name of an invariant is valid, but not anything about the proposition associated with it.
class invariants (mem:Type u#a) (m:memory mem) = {
iname:Type u#0; inv : iname→ slprop m → slprop m;
iname_ok: iname→ mem→ prop;
inv_iname_ok : (i:iname→ p:slprop m → h:mem→ Lemma (interpret (inv i p) h =⇒ iname_ok i h));
dup_inv : (i:iname→ p:slprop m → Lemma (inv i p == inv i p ∗∗ inv i p));
mem_owns : set iname→ mem → slprop m;
mem_owns_equiv : (i:iname→ p:slprop m→ h:mem→ e:set iname →
Lemma ((interpret (inv i p) h ∧ i ∉ e) =⇒ mem_owns e h == mem_owns (i ∪ e) h ∗∗ p));

}

2A technicality in F★ is that slprop is actually defined as the refinement of affine_p h to functions for which the extension-
ality holds, i.e., ∀ h. (p h⇐⇒ q h) =⇒ p==q. This would be unnecessary in other type theories where the extensionality
axiom is admissible for all functions.
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Key properties of invariants. First, via dup_inv, invariants are duplicable. The main property
of invariants is mem_owns e m—the predicate can depend on the entirety of m, since it typically
involves scanning the entire heap for stored invariants from the freshness counter down. It states,
roughly, that except for the invariants whose names are in the exclusion set e, all invariants in
m are valid. More precisely, via mem_owns_equiv, in a heap that validates inv i p, and when i is
not in the set of excluded invariant names e, the predicate mem_owns e m is equivalent to p and,
separately, mem_owns (i ∪ e) m, which additionally excludes the invariant in question, i. In other
words, mem_owns e m describes all the invariants in the heap that are not currently opened by some
thread in the program.

Liftable propositions. For memories that are defined in universe u#(a + 1), we define a class
containing a type prev in the previous universe u#a, with a pair of functions, up and down, to convert
between prev and slprop m. An p:slprop is storable if it is isomorphic to prev, i.e., up (down p) == p.
class with_prev (mem:Type u#(a + 1)) (m: memory mem) = {
prev : Type u#a; up: prev → slprop m; down: slprop m→ prev;
up_down: (p:prev→ Lemma (down (up p) == p)); }

The next part of our signature involves capturing requirements to build a model for ghost state.
This model is based on the notion of erasure in F★—we describe this briefly next.

A Primer on Erasure and Ghost Computations in F★. Erasure in F★ is important primarily for
efficiency—a program 𝑝 should be compiled while erasing all sub-computations that do not affect
𝑝’s result. F★’s type-and-effect system allows encapsulating computationally irrelevant terms to
ensure that the reduction of a pure term cannot depend on the values of encapsulated irrelevant
terms. The encapsulation mechanism is based on a simple monadic dependence tracking scheme,
inspired by other calculi for monadic information flow control, notably Abadi et al. (1999), and one
could implement the same basic scheme as a foundation for erasure in other languages.

Very briefly, F★ provides an abstract, monadic type erased t, with a constructor, the return of the
monad, hide: t→ erased t used to mark certain terms as irrelevant, e.g., the term hide (1 + 1) has type
erased nat but will be erased by the compiler to () rather than being reduced at runtime to, say, hide 2.
One canworkwith erased values in an explicitly monadic style. However, F★’s effect system provides
amore convenient syntax. In particular, an inverse function reveal satisfies reveal (hide x) == x, though
reveal (x:erased t) : t is marked with a "Ghost" effect, which taints any pure computation that depends
on the result of a reveal. This means that no pure computation can compose with it, except when
t is a type that carries no information (e.g., it is a sub-singleton, or t = erased s, etc.), similar to
the elimination rule for Prop in Coq. Non-informative types inhabit non_info t, the type of total
functions that are equivalent to the ghost function reveal, i.e., x:erased t → y:t { y == reveal x }. F★
provides implicit coercions to insert reveal in ghost contexts, so one doesn’t usually need to write it
explicitly. The online F★ book provides more details about erasure.3

Erasability in PulseCore. Erasure in PulseCore is important not just for efficiency—asmentioned
earlier, we want to be able to compose atomic steps with ghost steps and have them be able to open
invariants. As such, ensuring that ghost steps have no observable effects and can indeed be erased
is important also for correctness. Our goal is to build a notion of erasure for PulseCore’s stateful,
concurrent computations from a simpler foundation of erasure of pure computations provided by
F★. Towards that end, the signature of PulseCore expects an instance of the erasability class below.
class erasability (mem:Type u#a) (m:memory mem) (i:invariants mem) = {
equiv_ghost : mem→ mem→ prop;

3https://fstar-lang.org/tutorial/book/part4/part4_ghost.html#erasure-and-the-ghost-effect

https://fstar-lang.org/tutorial/book/part4/part4_ghost.html#erasure-and-the-ghost-effect
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update_ghost : (m0:mem→ m1:erased mem { equiv_ghost m0 m1 }→ m:mem { m == reveal m1 });
equiv_ghost_preorder : preorder equiv_ghost; non_info_iname: non_info i.iname; }

The predicate equiv_ghost m0 m1 is valid whenm0 andm1 only differ on erased state. In particular,
update_ghost, given a memory m0 and an erased memory m1, can reconstruct an updated memory
m that is equal to m1—since it can use m0 to construct all the non-erased parts of m. The equiv_ghost
relation only needs to be a preorder, though commonly, it would also be an equivalence relation.

Top-level signature. Finally, we reach the top-level signature of the PulseCore semantics of
memories and propositions, slsig, combining the elements we’ve defined so far. This mem type
is equipped with a m:memory structure; an invariants structure; a notion of raw propositions; and
support for erasability. We have a mem and slprop m in at least universe 1—the base heap can store
objects in universe 0, so its predicates are in universe 1.
type slsig : Type u#(a + 2) =
{ mem : Type u#(a + 1); m:memory mem; i:invariants mem; s:with_prev mem; e:erasability mem m i }

We write prev s for s.s.prev; slprop s for slprop s.m; iname s for s.i.iname; and so on. We can also
define storable propositions for a given signature:
let is_storable s (p:slprop s) = s.s.up (s.s.down p) == p let storable s (p:slprop s) = p:slprop s {is_storable s p}

3.2 Actions

The next step of our formalization is to give a semantics to computations, in particular to the
atomic and ghost actions that are the basic building blocks of PulseCore programs. Specifications
of actions are given using an indexed state monad (Nanevski et al. 2008), st a pre post, the type of
pure functions from initial states s0:s satisfying the precondition pre, to results (x, s1) that satisfy
the postcondition post s0 x s1.
let st s a (pre: s→ prop) (post: s→ a → s→ prop) = s0:s { pre s0 }→ res:(a & s) { post s0 res.1 res.2 }

It is easy to derive standard Hoare-style rules in st for returning pure values; for sequential
composition; for strengthening preconditions and weakening postconditions; and for operations to
get and put the state.
Based on this, we define the type of actions in PulseCore, frame-preserving, state-passing

functions, whose state is a refined memory, rmem s. The signature below describes a total function,
which for any frame is an st computation over rmem s, with result type a, and carrying four indexes:
the flag ghost describes whether or not the action has observable effects on the state; opens is a set
of invariant names that may be opened by the computation; req is the precondition; and ens is the
postcondition.
let action (ghost:bool) (s:slsig) (a:Type u#a) (opens:set (iname s)) (req:slprop s) (ens: a→ slprop s)
= except:set (iname s) { except ∩ opens = ∅ } → frame:slprop s→ st (rmem s) a

(requires 𝜆 m0 → inames_ok except m0 ∧ interpret (req ∗∗ frame ∗∗ mem_owns except m0) m0)
(ensures 𝜆 m0 x m1 → (ghost =⇒ equiv_ghost m0 m1) ∧ inames_ok except m1 ∧
interpret (ens x ∗∗ frame ∗∗ mem_owns except m1) m1)

where interpret p m = p (heap_of m) and inames_ok i m = ∀ n ∈ i. iname_ok i m

Wewrite act for action false and ghost_act for action true. Further, most actions open no invariants—
so, we usually omit the opens : set iname argument, rather than writing ∅ explicitly. We also write
ghost_act s p q for ghost_act s unit p (𝜆 _ → q), and similarly for act s p q.

For any signature s:slsig, we can prove that an erased ghost action with a non-informative result
is itself non-informative, in the following sense:
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val ghost_act_non_info (_:non_info a) (_:erased (ghost_act s a opens p q)) : ghost_act s a opens p q

The proof involves ghost-evaluating the erased action on an erased initial memory to obtain an
erased result and erased final memory, and using the equiv_ghost relation to apply the update_ghost
function to reconstruct the final memory. In other words, an erased ghost action can indeed be
erased at runtime, since an equivalent counterpart can always be constructed.

3.3 A Concrete Heap

We now show how to instantiate the abstract signature slsig. As a roadmap of the technical de-
velopment, we start by defining a core universe polymorphic concrete heap core : Type u#(a + 1).
Next, we define a ghost heap erased core—all actions on a ghost heap are ghost, while only ac-
tions that do not modify the concrete heap are ghost. Combining the two, we define a base heap
base_heap = core & erased core, which supports both concrete and ghost actions. Base heaps have
only a degenerate notion of invariants—as a final step in the construction, we define a notion of
heap extension, which adds a non-trivial notion of storable propositions and invariants.

We start with the type of core, shown below:
type cell : Type u#(a + 1) = | Cell : meta:erased bool→ a:Type u#a → p:pcm a → v:a → cell

let core_heap = addr → option cell where addr = nat

let core = { heap_of:core_heap; ctr:nat }

Each cell contains a value v of a given type a, where a is the carrier of some p:pcm a. Modeling
each cell of a heap as a PCM provides a flexible basis on which to define various sharing disciplines.
For example, should a user wish to model the data layout of a C like language with structures and
unions, PulseCore allows each abstract memory address to model an allocation unit, where the
value stored is product or sum, chosen from some appropriate PCM to model the struct or union in
question, together with some sharing discipline, e.g., different threads may own different fields of a
struct. We also store one bit of metadata in each cell, which we will use to encode invariants.

A PCM for core_heap. The first step in instantiating the signature is to give a PCM on core_heap,
easily defined as the pointwise lifting of the PCM at each cell, where cells are composable if they
agree on their types, their PCMs and metadata, and the values are composable in the cell’s PCM. In
other words, two core heaps h0, h1 are disjoint if on every address a in the domain of both h0 and
h1, the cells h0 a and h1 a are composable. With a PCM instance for core_heap, showing that core
inhabits the memory class is easy.

Invariants are degenerate. As mentioned before, for core the notion of invariants is trivial.
We just define iname = unit; inv i p = pure (p == emp); and iname_ok _ _ = ⊤. This makes the lemmas
inv_iname_ok and dup_inv trivial to prove. For mem_owns ex m we state that all addresses greater
than the counter are unallocated, i.e., pure (∀ i. i ≥ m.ctr =⇒ heap_of m i == None), which makes the
main invariant lemma, mem_owns_equiv, also easy to prove.

Only emp is storable. We define the type prev as the singleton type in the appropriate universe
and define up _ = emp and down _ = ().

Trivial ghost actions. Finally, since concrete heaps have no ghost state, we define equiv_ghost m0 m1
as m0==m1, which makes it trivial to give an instance of the erasability class for core.

Points-to Assertions. On core heaps, we define a points-to assertion as shown below, lifting
notions from a PCM at a given cell to core heaps, i.e., pts_to meta r v asserts partial knowledge v

over the contents of a memory cell at address r.
let ( ⪯ ) (x y:a) = ∃ frame. x .? frame ∧ x ⊙ frame == y
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let ref (#t:Type u#a) (p:pcm t) = addr

let pts_to (meta:bool) #t (#p:pcm t) (r:ref t p) (x:t) : slprop core = 𝜆 (h:core_heap) → match h r with

| Some (Cell m _ p' y) → m==meta ∧ p == p' ∧ x ⪯ y | _→⊥

A reference r:ref p is just an abstract memory address addr, though we write its type as ref p just
to indicate that it is a reference to a cell of type p:pcm a. This allows us to write pts_to meta r x and
F★ can infer the implicit arguments #t and #p.

One can also prove the following actions, starting with extend to allocate a new heap cell—notice
that the initial value must satisfy the PCM refinement:

val extend (meta:bool) (p:pcm) (x:a{p.refine x}) : act core (ref p) emp (𝜆 r → pts_to meta r x)

Next, one can lift a refinement-preserving, frame-preserving update on a PCM to a heap cell:

let fp_upd (p:pcm a) (x y:a) = v:a{ p.refine v ∧ x ⪯ v } →
u:a{ p.refine u ∧ y ⪯ u ∧ (∀ (f:a{x .? f}). y .? f ∧ (x ⊙ f == v =⇒ y ⊙ f == u))}
val upd (r:ref p) (f:fp_upd p x y) : act core unit (pts_to meta r x) (𝜆 _ → pts_to meta r y)

Dereferencing a reference returns a refined value (v:a{p.refine v}), and initial knowledge of the
ref-cell pts_to r x can be refined to pts_to r y, where y is compatible with the initial knowledge and
the returned value v.

let fcompat (p:pcm a) (x v y:a) = ∀ (frame:a). (x .? frame ∧ v == x ⊙ frame) =⇒ (y .? frame ∧ v == y ⊙ frame)
let upd_knows (p:pcm a) (x:a) = v:a{x ⪯ v}→ y:a{y ⪯ v ∧ fcompat p x v y}
val read (r:ref p) (f:upd_knows p x) : act core (v:a{p.refine v}) (pts_to meta r x) (𝜆 v→ pts_to meta r (f v))

The following ghost actions allow combining and sharing partial knowledge of a heap cell.

val gather (r:ref p) (x y:_): ghost_act core (_:unit{x .? y}) (pts_to m r x ∗∗ pts_to m r y) (pts_to m r (x ⊙ y))
val share (r:ref p) (x y:_{x .? y}): ghost_act core unit (pts_to m r (x ⊙ y)) (pts_to m r x ∗∗ pts_to m r y)

3.4 A Base Heap: Product of Concrete and Ghost Heaps

With a core heap at hand, we can define the base heap as a product of base = core & erased core,
where base_heap = core_heap & erased core_heap.

To define a PCM on base_heap, one can easily define pcm_erase (p:pcm a) : pcm (erased a), since,
as explained earlier, a and erased a are isomorphic using hide and reveal. Further, one can take
the product of PCMs, pcm_prod (p:pcm a) (q:pcm b) : pcm (a & b). Using both of these, we can define
pcm_base : pcm base_heap as pcm_prod pcm_core (pcm_erase pcm_core).
For invariants on base, we chose just trivial invariants, as we did with core, and, similarly, we

only define trivial storable propositions.
Defining erasability is more interesting. We define equiv_ghost b0 b1 == fst b0 == fst b1, allowing

the erased heap to change arbitrarily, easily showing it to be a preorder. For update_ghost b0 b1 we
define it as (fst b0, hide (reveal (snd b1))).
Affine predicates on the components of a PCM product can be lifted to affine predicates on the

product itself. This lets us define a pts_to and ghost_pts_to predicates on base heaps, assertions
about concrete and ghost state, respectively, simply by lifting the pts_to of each side. Note, we
only use the meta field on the ghost heap, so the meta field of the points-to assertion on concrete
references is always false.

val lift_fst: slprop h→ slprop (pcm_prod h g) val lift_snd: slprop g→ slprop (pcm_prod h g)
let pts_to r x = lift_fst (pts_to false r x)
let ghost_pts_to meta (r:ghost_ref p) (x:a) = lift_snd (pts_to meta r x) where ghost_ref p = erased (ref p)
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Similarly, actions on core lift to actions on base, while actions on erased core lift to ghost actions
on base. For example, we have:

val upd (r:ref p) (f:fp_upd p x y) : act base (pts_to r x) (pts_to r y)
val ghost_upd (r:ghost_ref p) (f:fp_upd p x y) : ghost_act base (ghost_pts_to m r x) (ghost_pts_to m r y)

3.5 Heap Extension: The Essence of Stratification

Next, we show how to extend a signature s:slsig u#a to a signature extend s : slsig u#(a + 1), where the
prev propositions of (extend s) are the slprops of s, yielding a construction that supports the dynamic
allocation of non-trivial invariants. That is, our initial goal is to define:

val extend (s:slsig u#a) : t:slsig u#(a + 1) { t.s.prev == slprop s }

Extended memories and heaps. The key idea is to define a type of memories that is a prod-
uct of s.mem and a base at the next universe level, i.e., ext_mem_t s = s.mem & base u#(a + 1), where
heap_of m : ext_heap s is (heap_of (fst m), heap_of (snd m)). Obtaining a PCM on ext_heap s is straight-
forward, as it is just the product of the PCMs on s.m.heap and base.heap. We write ext_mem s for the
memory built on ext_mem_t s. As before, products of PCMs also yield products of affine predicates,
so we have lift_fst and lift_snd to lift predicates on s.m.heap and base.heap to ext_heap s.

Liftable predicates. We define the prev type on ext_mem s as slprop s, where converting between
slprop s and slprop (ext_mem s) via up and down and proving down (up p) = p is straightforward.

let ext_prev (s:slsig u#a) : with_prev (ext_mem s) =
{ prev = slprop s; up = (𝜆 p h→ p (fst h)); down = (𝜆 p h→ p (h, empty)); up_down = . . . }

Invariants. A dynamically allocated invariant inv i p is represented by a ghost cell at address i in
the base u#(a + 1) heap, where the cell stores the proposition p from a PCM that supports duplicable
knowledge of the cell’s content. Ghost cells that store invariant propositions are distinguished from
other ghost cells by setting their metadata bit. However, as we also wish to preserve invariants
from the signature s:slsig u#a, we define invariants as follows:

let ext_iname s = erased (either (iname s) (ghost_ref (pcm_dup (slprop s))))
let ext_iname_ok s i (h0, h1) = match i with | Inl i→ iname_ok s i h0 | Inr i→ valid_ghost_addr h1 i

Invariant names iname are either names from s or ghost references to cells in pcm_dup (slprop s).
In the PCM pcm_dup a, we have x .? y only if either x or y are the unit element or they are equal; and
composition of non-unit elements x ⊙ y is just x (since x == y). An invariant name is valid (iname_ok)
when either the iname_ok of s is valid, or that the ghost reference is valid in h1.

Next, ext_inv s defines the main invariant former, where ext_inv s i p is either an invariant in s

or asserts knowledge of the ghost cell containing down p. In both cases, p must be storable—in
this definition up, down, and is_storable are with respect to ext_prev s, the extended signature being
defined.

let ext_inv s i p = match i with

| Inl i→ up (inv i (down p)) ∗∗ pure (is_storable p)
| Inr i→ lift_snd (ghost_pts_to true i (Some (down p))) ∗∗ pure (is_storable p)

The main internal invariant, mem_owns is defined below, and has three components: the lifting
of the mem_owns from s applied to the first component of the memory (where left_of ex is the
projection of a set (either a b) to set a); the lifting of the mem_owns from base applied to the second
component of the memory; and the main interesting part being the third conjunct, invs_except.
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let ext_mem_owns s ex (m0,m1) = lift1 (mem_owns #s (left_of ex) m0) ∗∗ lift2 (mem_owns #base {} m1)
∗∗ invs_except (ghost_ctr m1) ex m1

The invs_except predicate is an iterated separating conjunction of inv_of_cell for every address in
the ghost heap of m1: if the cell has its meta bit set then either the cell’s address is in the exclusion
set ex, or it’s PCM is pcm_dup (slprop s) and it contains a proposition p : slprop s such that up p is
valid. In other words, invs_except asserts ownership over all invariants stored in m1 except those in
the exclusion set ex.
Proving the lemmas inv_iname_ok and dup_inv is relatively easy; mem_owns_equiv, the main

lemma, is more involved, but the proof follows from the corresponding lemmas from s and base,
together with an induction on the iterated conjunction in invs_except.

Erasability. To complete our construction of extend s, we need to give an instance of the erasability
class. Defining equiv_ghost just follows from the conjunction of equiv_ghost on s and base_heap, and
the associated lemmas are easy to prove.

Other properties. Our construction satisfies several other useful properties, notably that up and
down commute with the logical connectives of slprop, including up_inv, which proves that lifting
invariants on s produces invariants on extend s.
val down_star s (p q:slprop (extend s)) : Lemma (down (p ∗∗ q) == down p ∗∗ down q)
val up_star s (p q:slprop s) : Lemma (up (p ∗∗ q) == up p ∗∗ up q)
val down_emp s : Lemma (down emp == emp)
val up_emp s : Lemma (up emp == emp)
val up_inv s i p : Lemma (up (inv s i p) == inv (extend s) (lift_iname i) (up p))

These lemmas allow one to also prove useful congruences on storable propositions, e.g., the con-
junction of two storable propositions is storable. Such lemmas, in conjunction with F★’s refinement
types and SMT based automation, make it easy to construct complex storable propositions from
basic building blocks like the storable points-to assertion.
let storable_star (s:slsig) (p q:storable s) : Lemma (is_storable s (p ∗∗ q))

Actions on extended heaps. As with our product of core and erased core, actions and propositions
on s and base lift to actions and propositions on extend s. For example, we gain two new points-to
predicates, for storing concrete or ghost values in the extended heap:
let ext_pts_to (#a:Type u#(a + 1)) (#p:pcm a) (r:ref p) (x:a) = lift_snd (pts_to r x)
let ext_ghost_pts_to (#a:Type u#(a + 1)) (#p:pcm a) (r:ghost_ref p) (x:a) = lift_snd (ghost_pts_to false r x)

More significantly, we can define the main interface to invariants, starting with new_invariant, a
ghost action that allows allocating any storable proposition as an invariant, writing ŝ for (extend s).
val new_invariant s (p:slprop ŝ { is_storable ŝ p }) : ghost_act ŝ iname p (𝜆 i → inv ŝ i p)

We can also define storable invariants for doubly storable propositions, effectively lifting invariant
creation on s to ŝ, where storable_iname i asserts that i:iname ŝ is just a lifting of an iname s.
val new_storable_invariant s (p:slprop ŝ) { is_storable s (down p) ∧ is_storable ŝ p })
: ghost_act ŝ (i:iname ŝ { storable_iname i }) p (𝜆 i → inv ŝ i p)
val storable_inames_are_storable s (i:iname ŝ { storable_iname i }) (p:slprop ŝ) { is_storable p })
: Lemma (is_storable ŝ (inv ŝ i p))

Next, dup_inv is a ghost action that allows duplicating an invariant:
val dup_inv s i p : ghost_act ŝ unit (inv ŝ i p) (𝜆 _→ inv ŝ i p ∗∗ inv ŝ i p)
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And, finally, with_invariant allows opening an invariant i, running an action f, and restoring the
invariant, so long as the f does not internally open i again—the entire step is ghost when f is ghost.
val with_invariant #s (i:_{ i ∉ opens }) (f:action is_ghost s a opens (p ∗∗ fp) (𝜆 x → p ∗∗ fp' x))
: action is_ghost s a ({i} ∪ opens) (inv s i p ∗∗ fp) (𝜆 x→ inv s i p ∗∗ fp' x)

The proof outline of with_invariant below shows how mem_owns_equiv is the key lemma, where
by assumption {i} ∪ opens is disjoint from the exclusion set ex, where the signature s implicit.
precondition: frame ∗∗ (inv i p ∗∗ fp ∗∗ mem_owns ex m0) by mem_owns_equiv

frame ∗∗ (inv i p ∗∗ fp ∗∗ p ∗∗ mem_owns ({i} ∪ ex) m0) by rearrange

(frame ∗∗ inv i p) ∗∗ (p ∗∗ fp ∗∗ mem_owns ({i} ∪ ex) m0) by run action f with ({i}∪ex) ∩ opens = ∅
(frame ∗∗ inv i p) ∗∗ (p ∗∗ fp' x ∗∗ mem_owns ({i} ∪ ex) m1) by mem_owns_equiv

frame ∗∗ (inv i p ∗∗ ∗∗ fp' x ∗∗ mem_owns ex m1) postcondition

This concludes the core formalization of the logic. We have built a generic separation logic with
concrete and ghost state, with storable propositions and actions that enable dynamically allocating
invariants.

3.6 Derived Connectives

Our core logic provides only the basic connectives of separation logic: several variants of pts_to, ∗∗,
and emp. In this section we show how to derive a variety of other connectives—we work with an
implicit signature s.

3.6.1 Points-to with fractional permissions. The points to predicate of the core logic is generic in a
PCM associated with a heap cell. This provides the flexibility needed to encode a variety of spatial
and temporal sharing disciplines. For example, one can easily code up points-to predicates with
fractional permissions (Boyland 2003); in §4, we look at other PCM-based ghost state constructions.
The PCM of fractions, pcm_frac a : pcm (option (a & r:real{r>0})), has unit element None, and non-

unit elements are composable if they agree on their values and their real-valued permissions sum
to at most 1; and composition sums permissions. A points-to predicate with fractional permissions
pts_to_frac r p v is just an instance of the core points-to predicate, using the PCM of fractions.
let pts_to_frac (#a:Type) (x:ref a) (p:real{p>0}) (v:a) = pts_to #a #(pcm_frac a) x (Some (v, p))

The usual actions to share and gather fractional permissions follows directly, by instantiating
the PCM-generic share and gather actions shown in §3.3—we write x ↦→ v for pts_to_frac x 1 v and
and x

p

↦→ v for pts_to_frac x p v.

val share : ghost_act (x
p+q
↦→ v) (x

p

↦→ v ∗∗ x
q

↦→ v)

val gather : ghost_act (x
p

↦→ u ∗∗ x
q

↦→ v) (x
p+q
↦→ u ∗∗ pure (u==v ∧ p+q ≤ 1))

3.6.2 Iterated Conjunction. Being embedded in F★, PulseCore is naturally extensible with ad-
ditional connectives. For instance, an iterated conjunction defined by recursion is shown below,
including several ghost functions to manipulate on_range predicates:
let rec on_range (p: (nat→ slprop)) (i j: nat) : Tot slprop (decreases (if j ≤ i then 0 else j − i))
= if j < i then pure ⊥ else if j = i then emp else p i ∗∗ on_range p (i + 1) j
val on_range_empty : ghost_act emp (on_range p i i)
val on_range_singleton_intro : ghost_act (p i) (on_range p i (i+1))
val on_range_singleton_elim : ghost_act (on_range p i (i+1)) (p i)
val on_range_join : ghost_act (on_range p i j ∗∗ on_range p j k) (on_range p i k)
val on_range_j : ghost_act (on_range p i j ∗∗ pure (i ≤ j ∧ j ≤ k)) (on_range p i j ∗∗ p j ∗∗ on_range p (j+1) k) . . .
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3.6.3 Existential Quantification. We define existential quantification as an affine predicate, as
shown below. This quantifier is impredicative, meaning that one can quantify over values in any
universe a:Type u#a, relying on the impredicativity of the propositional existential quantifier.

let ( ∃∗ ) (#a:Type u#a) (p: a→ slprop) = 𝜆 m→ ∃ x. p x m

Ghost actions to introduce and eliminate existentials are shown below—the elimination is the
lifting of the propositional axiom of indefinite description.

val intro_∃ : ghost_act (p x) (∃∗ x. p x)
val elim_∃ : ghost_action (erased x) (∃∗ x. p x) (𝜆 x→ p x)

One can also prove the following lemma, showing that an existentially quantified storable
proposition is itself storable.

val ∃_storable (p:(a→ slprop) { ∀ x. is_storable (p x) }) : Lemma (is_storable (∃∗ x. p x))

3.6.4 Trades & Universal Quantification. A magic wand is easy to define:

let ( -∗ ) (p q : slprop) = 𝜆 m0 → ∃ r. r m0 ∧ (∀m1. m0 .? m1 ∧ p m1 =⇒ q (m0 ⊙ m1))

However, we define variations on the magic wand that encapsulate ghost actions and are more
idiomatic for use in Pulse.
First, analogous to a view-shift in Iris, one can define the following abstraction of an invariant-

opening ghost function that transforms assertions on the ghost state from p to q.

let shift opens p q = ∃∗ (f:ghost_act unit opens p (𝜆 _→ q)). emp

The introduction rule for a shift is just the introduction for the corresponding existential quantifier.
The elimination rule is a bit more interesting, and is implemented by eliminating the existential
associated with the shift, then applying the ghost function to transform the p to q. As such, shifts
provide a "logical" way to manipulate ghost functions.

val intro_shift (f:ghost_act opens p q) : ghost_act opens emp (shift opens p q)
val elim_shift : ghost_act opens (shift opens p q ∗∗ p) q

Shifts are both duplicable and storable, since they hold only the trivial proposition emp. We also
define a connective called a "trade", which is a resource-holding analog of a shift. Trades have the
same elimination principle as shifts, but they are not duplicable in general, since they may hold a
non-trivial resource r. They are also not storable in general, though one can also define a variant, a
storable_trade, that holds a storable resource r.

let trade opens p q = ∃∗ (r:slprop) (f:ghost_act opens (r ∗∗ p) q). r
val intro_trade (r:slprop) (f:ghost_act opens (r ∗∗ p) q) : ghost_act opens r (trade opens p q)
val elim_trade : ghost_act opens (trade opens p q ∗∗ p) q
val weaken_opens : ghost_act (trade o1 p q ∗∗ pure (o1 ⊆ o2)) (trade o2 q r)
val trans : ghost_act (trade o p q ∗∗ trade o q r) (trade o p r)

Trades are weaker than magic wands, in the sense that p -∗ q implies trade o p q; trades are also
weaker than shifts. In a similar style, one can also define universal quantification as an existential
abstraction of a ghost function.

let fa (#a:Type u#a) opens (p:a→ slprop) = ∃∗ (r:slprop) (f:(x:a → ghost_act opens r (p x))). r
val intro_∀ (f:(x:a→ ghost_act opens r (p x))) : ghost_act r (fa opens p)
val elim_∀ (x:a) : ghost_act opens (fa opens p) (p x)
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Abstracting ghost functions into logical connectives yields a proof style that enables switching
between the logical flavor of systems like Iris with the explicit ghost-function passing style of
systems like Verifast (Jacobs and Piessens 2011).

3.7 Representing Concurrent Computations

The last step in our formalization is to extend the logic beyond just individual actions and ghost
actions and apply it to general-purpose concurrent programs. This is relatively straightforward,
by representing computations as trees of actions, one sub-tree for each thread. The semantics
of an entire computation tree is given by an interpreter which repeatedly picks a thread (non-
deterministically) and evaluates that thread’s next action—in other words, the dynamic semantics
of is an interleaving of atomic actions from threads modeling a sequentially consistent machine.
The type of computation trees is stt a p q, shown below. Intuitively, these trees represent the

runtime configuration of a partially reduced program with precondition p, return type a, and
postcondition q. The term Ret v represents a computation fully reduced to a value. Act f k is a
computation that begins with the action f and then continues with k. Par m0 m1 k represents m0
and m1 executing concurrently, with the continuation k waiting until they have both completed.
type stt (s:slsig) : a:Type u#a→ slprop s → (a→ slprop s) → Type =
| Ret: x:a → stt s a (p x) p
| Act: f:act s o p q → k:(x:b → Dv (stt s a (q x) r))→ stt s a p r

| Par: m0:stt s (raise_t unit) p0 q0 → m1:stt s (raise_t unit) p1 q1 → k:stt s a (q0 ∗∗ q1) q→ stt s a (p0 ∗∗ p1) q

In the type of Act f k, the continuation k is a function in F★’s effect of divergence. That is, the
continuation is allowed to potentially loop forever—this is the essential bit that allows us to give a
partial correctness semantics for PulseCore, enabling programming functions such as acquire to
loop indefinitely until the lock becomes available.4 Note also that we only have one kind of action
node, Act, rather than a separate one for ghost actions. This is because, as discussed in §3.2, using
ghost_act_non_info, an erased ghost action can be promoted to a ghost action with the same type,
and then subsumed to an action. Another subtlety is in Par m0 m1 k, the sub-trees m0 and m1 return
unit values raised to a given universe u#a—this is a technicality that allows the definition to be
properly universe polymorphic in the result type. With Par, we model structured parallelism only,
since in conjunction with synchronization libraries like locks, it can be used to encode other forms
of concurrent control, though in the future one could imagine extending the representation of trees
with other forms of concurrent composition.

To interpret computation trees, we work in an extension of the st monad that provides an
additional action called flip that consumes a boolean from an infinite input tape of randomness.
The signature of the interpreter is shown below, reflecting our main partial correctness theorem:
given a source of randomness (t:tape) a computation tree f:stt s a pre post can be interpreted as a
potentially divergent state-passing function from input states m0 validating its precondition and
the invariant, to results and final states m1 validating the postcondition.
val run s (t:tape) (f:stt s a pre post) (m0:rmem s { interpret (pre ∗∗ mem_owns ∅ m0) m0 })
: Dv (res:(a & rmem s) { let x, m1 = res in interpret (post x ∗∗ mem_owns ∅ m1) m1 })

The implementation of run is relatively straightforward, especially for Ret and Act nodes. For Par
nodes, it consumes a bit from the tape, and recurses into one of the subtrees accordingly.
4It is also possible to require k to be a total function, yielding a total correctness semantics for, say, non-blocking concurrent
programs with structured parallelism. Alternatively, instead of the effect of divergence, one could also define a coinductive
semantics in the style of interaction trees (Xia et al. 2019), and indeed a library for interaction trees exists in F★ (https:
//github.com/RemyCiterin/CoIndStar/tree/main). However, deriving a separation logic for interaction trees would require a
significantly more work than the compact, intrinsically typed approach we use here.

https://github.com/RemyCiterin/CoIndStar/tree/main
https://github.com/RemyCiterin/CoIndStar/tree/main
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One can also derive the following combinators.

val frame (fr:_) (f:stt s a p q) : Dv (stt s a (p ∗∗ fr) (𝜆 x→ q x ∗∗ fr))
val bind (f:stt s a p q) (g: (x:a → stt s b (q x) r)) : Dv (stt s b p r)
val par (m0:stt s unit p0 q0) (m1:stt s unit p1 q1) : Dv (stt s unit (p0 ∗∗ p1) (q0 ∗∗ q1))

While one can actually execute programs using run, in practice, we rely on run only to provide a
semantic basis, and instead execute concurrent Pulse programs by extracting them to OCaml, C,
or Rust using efficient, native concurrency primitives.

4 CASE STUDIES

Although the PulseCore logic and actions are generic in a signature, for Pulse, we fix a signature
sig3 where sig0 = base u#0 and sigi+1 = extend sigi, reflecting the naming convention shown in Figure 1.
Fixing a signature makes the design of libraries relatively simple, though perhaps not as general as
embracing signature-polymorphism throughout—we leave signature polymorphism in Pulse as a
topic to explore in the future. We can now define:

let slprop4 : Type u#4 = slprop sig3
let slprop3 : Type u#3 = slprop sig2 let ↑3 = sig3.s.up let ↓3 = sig3.s.down
let slprop2 : Type u#2 = slprop sig1 let ↑2 = sig2.s.up let ↓2 = sig2.s.down
let slprop1 : Type u#1 = slprop sig0 let ↑1 = sig1.s.up let ↓1 = sig1.s.down
let slprop = slprop4
let storable = p:slprop{ is_storable sig3 p }
let storable2 = p:slprop { is_storable sig3 p ∧ is_storable sig2 (↓3 p) }
let storable3 = p:slprop { is_storable sig3 p ∧ is_storable sig2 (↓3 p) ∧ is_storable sig1 (↓2 (↓3 p)) }

The types storable3 ≤ storable2 ≤ storable ≤ slprop, are related by refinement subtyping. This lets us
use just one set of connectives, e.g., we have ( ∗∗ ) : slprop→ slprop→ slprop, thoughwith lemmas that
allow us to prove that p ∗∗ q is storable if p and q are storable, and likewise for storable2. This means
that connectives like ∗∗ and ∃∗ are overloaded, e.g., ( ∗∗ ) can also be typed at storable→ storable→ storable

and storable2 → storable2 → storable2, providing a flavor similar to intersection types.
We also have several kinds of PCM-generic points-to predicates, for universes 0–3. We also have

the corresponding ghost_pts_to0–ghost_pts_to3 predicates.

val pts_to0 (#a:Type u#0) (#p:pcm a) (r:ref p) (v:a) : storable3
val pts_to1 (#a:Type u#1) (#p:pcm a) (r:ref p) (v:a) : storable2
val pts_to2 (#a:Type u#2) (#p:pcm a) (r:ref p) (v:a) : storable
val pts_to3 (#a:Type u#3) (#p:pcm a) (r:ref p) (v:a) : slprop

We also overload the invariant type inv i p, so that it can be storable when i is a storable iname,
constructed using new_storable_invariant shown in §3.5. As such, with refinement subtyping, one
can allocate invariants of the form inv i (inv j p), provided inv j p is storable, without needing to deal
with multiple distinct variants of the inv type.

One may wonder why we chose four levels—pts_to0 is obviously useful for the concrete heap,
pts_to1 is useful to store values of sigma types like (t:Type u#0 & f t), which is occasionally useful;
pts_to2 is for storing predicates about memory locations containing sigma types; and slprop4 is
useful for invariants over everything else. Of course, we could easily add more levels in the future.

The following provides a mapping between Pulse and PulseCore function signatures:
ghost fn f ... : requires p returns x:t ensures q opens o ≜ f ... : erased (ghost_act sig3 t o p (𝜆 x → q))
atomic fn f ...: requires p returns x:t ensures q opens o ≜ f ... : act sig3 t o p (𝜆 x→ q)
fn f ... : requires p returns x:t ensures q ≜ f ... : stt sig3 t p (𝜆 x→ q)
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We have used Pulse to build a variety of verified libraries and applications, as summarized in the
table alongside, representing about 20,000 lines of code and proof. Our code includes basic libraries
for references, arrays, and a model of heap and stack allocation; derived combinators including the
connectives of §3.6; libraries of PCM constructions; data structures hash tables, linked lists, a double-
ended queue, utilities on arrays; and various concurrency-related libraries, including mutexes
and barriers. We also report on an implementation of DPE, a low-level, cryptographic measured

Basic 4,334
Derived combinators 1,695
PCMs 1,696
Data Structures 6,900
Concurrency 2,490
DPE protocol 3,673

Total (LOC) 20,888

boot protocol service with support for concurrent sessions.
Independently of the work reported here, Pulse has also been
used to model of task-parallel programs, in the development
of parsing and serialization libraries, and other related ef-
forts, giving us some confidence that abstractions provided
by PulseCore are sufficient for a range of verified software
applications. In the space that remains, we focus on describing
two small case studies that show aspects of PulseCore at
work, followed by an overview of our implementation of DPE.

4.1 An 𝑛-way Parallel Increment with Dependently-typed Ghost State

Owicki & Gries show how to prove that a program correctly adds 2 to an integer reference by
atomically incrementing it twice in parallel. Their proof, repeated in innumerable variations in
many systems, makes essential use of ghost state, to track the contributions of each thread, together
with an invariant stating the current value of the reference is the initial value plus the sum of
the contributions. We show how to do this proof in Pulse, with a twist: our construction works
generically for an arbitrary number of 𝑛 threads each incrementing the reference in parallel, and
illustrates the use of invariants over custom dependently-typed PCMs for ghost state. Of course,
incrementing a reference in parallel is just an idealization of the more general problem of reasoning
about multiple threads mutating a shared data structure.

For starters, we assume an atomic primitive to increment an integer reference (ignoring that an
integer increment may overflow—handling overflow is orthogonal to the point of this example).
atomic fn atomic_incr (r:ref nat) : requires r ↦→ i ensures r ↦→ (i + 1)

Next, we define for any n: nat, a PCM pcm_of n based on the commutative monoid (nat, 0, +) on
natural numbers, where (pcm_of n).refine x = (x==n). One could also do this example in other ways,
but we show this style to illustrate a simple use of a refined PCM as mentioned at the start of §3.1.
The type tank n below is the building block of our ghost state, a ghost reference to a pcm_of n.
let pcm_of n = pcm_of_cm nat_plus_cm n let tank (n:nat) = ghost_ref (pcm_of n)

The assertions we can form on r:tank n are of the form own_units r i = ghost_pts_to0 r i, and since i
must always be compatible with a "full value" for pcm_of n, we can prove from own_units r i that i ≤ n.
Further, we can convert between owns_unit r i ∗∗ own_units r j and own_units r (i + j), with share_units

and gather_units, respectively.
ghost fn own_units_bound (r:tank n) requires own_units r i ensures own_units r i ∗∗ pure (i ≤ n)
ghost fn share_units (r:tank n) requires own_units r (i + j) ensures own_units r i ∗∗ own_units j
ghost fn gather_units (r:tank n) requires own_units r i ∗∗ own_units r j ensures own_units r (i + j)

The main idea of the proof is captured by the following contribs predicate—notice that F★’s
refinement typing automatically proves that it is storable. The ghost state is represented (below)
by two 𝑛-sized tanks: given, which tracks how many units g have already been contributed to the
current value of the reference r (i.e., v==init+g); and to_give, which tracks how many units are still
outstanding. The sum of what has been given and what is still outstanding is always n.
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type ghost_state (n:nat) = { given:tank n; to_give:tank n }
let contribs n init (gs:ghost_state n) (r:ref int) : storable =
∃∗ (v g t:nat). r ↦→ v ∗∗ own_units gs.given g ∗∗ own_units gs.to_give t ∗∗ pure (v==init+g ∧ g+t==n)

The proof itself involves shuffling knowledge of the ghost state. The specification from the
perspective of the threads is the dual of the specification of the invariant. For a thread specification,
we write can_give gs n to mean own_units gs.given n and has_given gs n to mean own_units gs.to_give n.

First, we initialize the ghost state, giving each thread ownership of one unit of the given tank.

ghost fn init n r requires r ↦→ i returns gs:ghost_state n ensures contribs n i gs r ∗∗ can_give gs n

A key property of the ghost state is the following lemma: if the threads can prove has_given gs n,
then the reference has been incremented 𝑛 times—since we know that contribs owns t units of the
to_give tank, we can conclude that t==0, since n+t≤n and hence g==n.

ghost fn finish gs requires contribs n i gs r ∗∗ has_given gs n ensures r ↦→ (i+n)

As each thread increments its reference, it gives one unit of ownership of the given tank to
contribs; and takes one unit of ownership from the to_give tank for has_given gs 1

atomic fn incr_core gs r requires can_give gs 1 ∗∗ contribs n i gs r

ensures has_given gs 1 ∗∗ contribs n i gs r {
unfold contribs; unfold can_give; gather_units gs.given;
atomic_incr r; (∗ the actual increment ∗)
share_one_unit gs.to_give; fold (has_given gs 1); fold (contribs n i gs r); }

At the top-level we initialize the ghost state, allocate contribs n i gs r as an invariant (using a
library for "cancellable invariants", which we describe shortly), then spawn n threads by recursively
using the par combinator shown in §3.7; cancel the invariant and call finish.

fn incr_n (r:ref nat) (n:nat) requires r ↦→ i ensures r ↦→ (i+n) {
let gs = init n r; let ci = CI.new_cancellable_invariant (contribs n i gs r);
incr_n_aux r n ci; (∗ spawn n increment threads ∗)
CI.cancel ci; finish gs r gs; }

About cancellable invariants: the library CI provides a way to allocate an invariant tracked by
a fractional permission (CI.active i p), which can be cancelled by a thread that has full ownership
of the invariant. Using this library, we wrap incr_core so that it can be called in parallel, as shown
below.

atomic fn increment r (i:CI.inv)
requires can_give gs 1 ∗∗ CI.active i p ∗∗ inv (CI.iname_of i) (CI.cinv i (contribs n i gs r))
ensures has_given gs 1 ∗∗ CI.active i p ∗∗ inv (CI.iname_of i) (CI.cinv i (contribs n i gs r))
opens {CI.iname_of i} { with_invariants (CI.iname_of i) { CI.unpack i; incr_core gs r; CI.pack i; } }

Using dependently typed ghost-state, the code for increment including its ghost code, is identical
for every thread, and generalizes to an arbitrary number of threads. In contrast, other proofs have
required a separate proof for each thread, or parameterizing each thread by the ghost code and
proving and instantiating that ghost code differently for each thread (Jacobs and Piessens 2011).

4.2 Barriers & Higher-order Ghost State

Jung et al. (2016), Dodds et al. (2016) and others show how to specify and verify a barrier library in
impredicative logics. The interface of a barrier, adapted to Pulse syntax, is shown below:
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val t : Type u#0 val iname_of (_:t) : iname

val send (b:t) (p:slprop) : slprop val recv (b:t) (p:slprop) : slprop
fn signal (b:t) requires send b p ∗∗ p ensures emp fn wait (b:t) requires recv b p ensures p

ghost fn split (b:t) requires recv b (p ∗∗ q) ensures recv b p ∗∗ recv b q opens {iname_of b}
fn icreate (p:slprop (∗ ideal ∗)) requires emp returns b:t ensures send b p ∗∗ recv b p

We have an abstract type t representing a barrier, which holds an invariant iname_of t. The
predicate send b p gives the signalling thread permission to send p over b; while a thread with
recv b p blocks using wait until the signal is received and can then use the received p. The most
interesting part of this interface is the ghost function split: if a thread holds recv b (p ∗∗ q), it can split
it into recv b p and recv b q and share that among multiple threads. The tricky bit is that doing so
requires knowing that when the barrier is signalled with p, multiple threads waiting on the barrier
can safely proceed with their own separate fragment of p—we need some ghost state accounting
for how much of p has already been handed out to waiting threads. In other words, we need ghost
state which stores a proposition, aka higher-order ghost state.
Now, the ideal interface for a barrier would provide a function icreate that allows creating a

barrier for any p:slprop—this is what Jung et al. accomplish with impredicativity in Iris. However,
with PulseCore, we cannot provide this interface, since we cannot store an arbitrary slprop. But,
with stratification and dependent types, we can come close.

4.2.1 A Code-Generic Interface for Barriers. We start by showing an interface to barriers that is
parameterized by a language of codes. A c:code is a type t : Type u#2 that can be "decoded" into a
storable proposition, with at least a code z for the empty proposition. A p:slprop is codeable if there
is a code that decodes to p.
type code : Type u#4 = { t : Type u#2; up : t→ storable; z : t{ up z == emp } }
class codeable (code:code) (p:slprop) = { c : code.t; laws : squash (code.up c == p) }

Using codes, we can define the following interface to barriers, which is nearly identical to our
ideal interface above, except that the type of a barrier is now indexed by a language of codes, c:code.
val ct (c:code) : Type u#0 val iname_of (b:ct c) : iname

val send (b:ct c) (p:slprop) : slprop val recv (b:ct c) (p:slprop) : slprop
fn signal (b:ct c) requires send b p ∗∗ p ensures emp fn wait (b:ct c) (p:slprop) requires recv b p ensures p

Where things are different, however, is in the interface to create and split. For create, we can
allocate a barrier for any codeable proposition p; and for split, we can split a recv b (p ∗∗ q) if we are
given codes for p and q.
fn create (p:slprop) (_:codeable c p) requires emp returns b:ct c ensures send b p ∗∗ recv b p

ghost fn split (b:ct c) (cq:codeable c p) (cr:codeable c q)
requires recv b (p ∗∗ q) ensures recv b p ∗∗ recv b q opens {iname_of b}

The implementation of this interface is interesting, taking a few hundred lines of Pulse—so we
only provide a glimpse of its main invariant.

A barrier b:ct c is represented by a single concrete reference r, and a ghost map from numbers to
fractionally owned codes. The ghost ref ctr is a high water mark for the map, above which the map
is empty. The name of the barrier invariant is stored in the last field i.
type ct (c:code) = { r:ref U32.t; ctr:ghost_ref nat; map:ghost_ref (pointwise nat (pcm_frac c.t)); i:iname }

The invariant, shown below, says that the map is stored in a universe 2 ghost reference and
holds full permission to the map above the high-water mark n, and half permission to the rest of
the map m. If the reference r is not yet set (v=0), then the iterated conjunction of the decoding of
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the map elements in m is equal to the p; otherwise, the invariant owns the iterated conjunction of
the decoding—again, F★ automatically proves that ct_inv is storable.

let ct_inv (b:ct c) (p:slprop) : storable = ∃∗ v n m. b.r
.5↦→ v ∗∗ b.ctr ↦→ n ∗∗

ghost_pts_to2 b.gref m ∗∗ pure (all_perms m 0 n 0.5) ∗∗ ghost_pts_to2 b.gref (full_map_above n) ∗∗
(if v=0 then pure (p==on_range (predicate_at m) 0 n) else on_range (predicate_at m) 0 n)

The send predicate simply holds the invariant and half ownership to the un-set reference—
allowing the signaling thread to transfer ownership of p to the invariant by flipping the reference.
The recv b p predicate holds the invariant and knowledge of an entry n in the map that holds a code
that decodes to p, allowing a waiting thread to learn that when the flag is set, the invariant holds
an iterated conjunction with p at index n. It can then clear the entry at n setting it to c.z the code
for emp, and return p to the waiting thread. Splitting a recv b (p ∗∗ q) involves clearing the index n

and setting codes for p and q at fresh indexes, and moving the ctr up accordingly.

let send b p = inv b.i (ct_inv b p) ∗∗ b.r
.5↦→ 0

let recv b p = ∃∗ n k. inv b.i (ct_inv b p) ∗∗ ghost_pts_to2 b.map (singl n .5 k) ∗∗ pure (c.up k == p)

4.2.2 Using the Code-Generic Interface. Using the code generic interface with storable2 propositions
is easy, since PulseCore already effectively provides slprop2 as a code for them:
let free_code = { t = slprop2; up = ↑3 ◦ ↑2; z=↓2 ↓3 emp }
let free_code_of (p:storable2) : codeable free_code p = { c = ↓2 ↓3 p; laws = () }

This suffices for most common cases, i.e., communicating ownership of propositions over heap
cells with universe 0 or 1 values. However, the predicates send b p and recv b p are not storable2, since
they hold invariants and recv holds a permission to b.map, which is storable, though not storable2.
So, if one wanted to communicate permissions to one barrier b over another barrier b', we either
need to work another heap layer (creating a barrier first to communicate storable3 predicates, which
could then be communicated once over another barrier etc.), or, using dependent types, we can just
come up with a custom language of codes, as we’ll see next.

First, we prove that the send (and recv) predicates can be decomposed into a storable part send_core
(resp. recv_core) and a duplicable part.
val binv (b:ct c) (p:slprop) : slprop val send_core b : storable
ghost fn dup_binv b p requires binv b p ensures binv b p ∗∗ binv b p

ghost fn decompose_send b requires send b p ensures binv cv p ∗∗ send_core b
ghost fn recompose_send b requires binv b p ∗∗ send_core b ensures send b p

Next, we can define a custom language of codes in u#2 covering send_core and recv_core, which
would otherwise only be representable in u#3.
type cc (c:code) = | Small of c.t | Star : cc c→ cc c→ cc c | Send : ct c → cc c | Recv : ct c → c.t→ cc c

let rec up_cc #c (t:cc c) : storable = match t with

| Small s → c.up s | Star c1 c2→ up_cc c1 ∗∗ up_cc c2
| Send cv→ send_core cv | Recv cv s → recv_core cv (c.up s)
let cc_code (c:code) : code = { t = cc c; up = up_cc; z = Small c.z }

Finally, we can use this custom language of codes to create a barrier that can communicate
permissions to another barrier.
fn barrier2 (p:slprop2) requires p ensures p

{ let b1 = create p (free_code_of p); let b2 = create (send_core cv1) (code_of_send_core b1);
decompose_send b1; signal b2 || (wait b2; recompose_send b1; signal b1) || wait b1 }
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4.3 A Verified, Executable Implementation of DICE Protection Environment (DPE)

A measured boot protocol computes the measurements (e.g., cryptographic hashes) of firmware
and software on a device, as it boots up, and records them for subsequent verification. DICE, a
Trusted Computing Group standard, specifies a layered architecture for measured boot. In DICE,
each firmware layer 𝐿𝑛 , before it transfers the control to the next layer 𝐿𝑛+1, computes a secret
called Compound Device Identifier (CDI) 𝐶𝑛+1 derived from 𝐶𝑛 and the measurement of 𝐿𝑛+1 (the
lowest firmware layer uses a hardware-based secret as the root of trust). Layer 𝐿𝑛 may also derive a
public-private key-pair for 𝐿𝑛+1 (using 𝐶𝑛+1) and issue an X.509 certificate. DICE★ (Tao et al. 2021)
is a verified implementation of DICE in F★.
DPE is an evolution of the DICE standard, aimed at confining the DICE secrets to a separate

component, as opposed to being directly accessible to the firmware layers. DPE specifies an API
that a client may use to implement DICE; the API is designed in a way that only public information
(public keys, certificates) is exchanged with the client. DPE supports multiple sessions, each running
its own DICE protocol instance, and concurrent operations on different sessions, to scenarios such
as when a device has multiple chips that each have separate certified boot sequences using DICE.
We implement DPE in Pulse, focusing on a basic profile that provides a function call interface,

plaintext sessions, no session migration, and support for message signing and X.509 certificates (no
sealing). We specify the DPE API in Pulse, supporting multiple concurrent sessions, and prove
that (a) each session follows the DICE protocol state machine (the firmware layers boot up in
order), and (b) concurrent operations on different sessions do not interfere with each other. Using
the Pulse extraction pipeline, we extract this implementation to Rust. Finally, using Rust Foreign
Function Interface (FFI), we link our code with the (extracted) C libraries for DICE★ (for verified
X.509 certificates serialization) and EverCrypt (for verified cryptographic primitives) (Protzenko
et al. 2020), to provide an end-to-end implementation of DPE published as a Rust crate.
The Pulse implementation of DPE relies on several Pulse libraries. We build a verified linear

probing hash table to map sessions to their DICE states in the DPE. The hash table is protected with
a mutex—we build a mutex library modeled on (and extracted to) Rust mutexes. A DPE function on
a session acquires the mutex, reads session state from the table, updates the table with a special
InUse state, and releases the mutex. This allows for concurrent operations on different sessions. At
the end of the function, the session table is updated with the new state. We specify the DICE state
machine correctness for individual sessions using a ghost reference to a pointwise map PCM (one
entry per session), where each entry in the map itself is a monotonic trace PCM with fractional
permissions. The trace captures the valid state machine transitions, while fractional permissions
allow for sharing half the permission for individual sessions with the client. Each DPE API is
specified using this ghost reference and ensures that every session follows the DICE state machine.
The extracted DPE implementation (excluding libraries such as the hash table, which we also
extract) consists of 1575 lines of formatted Rust code. The Pulse specification of the state machine
and the DPE API consists of 276 lines of code, while the implementation contains 215 lines of
computational code and 442 lines of lemmas, ghost functions, and proof hints.

5 RELATEDWORK & CONCLUSIONS

We have discussed related work throughout the paper, but cover the relation to other logics here. The
closest related work to ours is SteelCore (Swamy et al. 2020). Like PulseCore, it provides a shallow
embedding of CSL in F★, but, as mentioned earlier, its formalization relies on an effectful semantics
of monotonic state developed by Ahman et al. (2018) and axiomatized in F★. This axiomatization
provides a predicatewitnessed (p:mem→ prop) : prop, where one can introducewitnessed p by proving
that p holds for the current memory and remains true as the memory evolves. An effectful operation
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recall eliminates witnessed p, allowing the caller to assume that p is true in the current memory.
Unfortunately, this construction can be broken by using parametricity-breaking classical axioms,
such as indefinite description, which is commonly used in ghost code. The authors of SteelCore
propose and implement various fixes to the SteelCore logic to curtail the impact of this problem,
though their fixes are not backed by a formal proof of soundness. Further, the fixes introduce
various restrictions on the use of ghost code, and requires treating invariant tokens as non-erasable
values, despite their having no actual runtime significance. These issues are described at length
online at https://github.com/FStarLang/FStar/issues/2814.

PulseCore avoids these problems by providing a foundational model without relying on effectful
axioms. Though we have applied PulseCore to F★ programs with the effect of divergence, the
logic itself stands on its own—one could also use it as the basis of a logic for total correctness, if
that were desired. There are two other foundational differences with SteelCore. First, although
SteelCore also provides a notion of ghost computation, this is also axiomatic, whereas in PulseCore,
ghost computations are derived from F★’s notions of erasure. Second, SteelCore’s representation of
computation trees are more complex than the Ret−Act−Par definition of PulseCore shown in §3.7.
It turns out that SteelCore’s definition fails to be properly universe-polymorphic and cannot be
used as the basis for representing computations in Steel (Fromherz et al. 2021), a surface language
for proving in SteelCore, the analog of Pulse to PulseCore.

SteelCore offers a different specification style than PulseCore. The core proposition in Steel is
called vprop, a "proposition with an associated value", that allows treating a proposition like a heap
fragment fromwhich values can be projected. The authors of Steel show that vprops canmake certain
kinds of specifications easier and more amenable to SMT-based automation, similar to implicit
dynamic frames (Smans et al. 2012), however, this comes at the loss of extensionality for vprop,
i.e., equivalent vprops are not necessarily equal. In contrast, PulseCore provides a more canonical
model of separation logic propositions, just affine PCM-predicates, validating the extensionality
principle. PulseCore is also more expressive, with its stratification enabling storable propositions
and nested invariants, features lacking in SteelCore.

We have already compared our work to Iris, HTT, and FCSL. iCAP (Svendsen and Birkedal 2014)
is an impredicative separation logic, and an ancestor of Iris. Its model is also based on interpreting
propositions in a custom category with step-indexing and, like Iris’ model, it does not appear
amenable to a shallow embedding within dependent types. Preceding iCAP, HOCAP (Svendsen
et al. 2013) provides a higher-order separation logic, that like PulseCore is predicative, but uses
step-indexing for nested Hoare triples and guarded recursive predicates. Instead of nested Hoare
triples, PulseCore, being dependently typed, supports abstracting over functions with pre- and
post-conditions expressed in types. Guarded recursive predicates would be useful to investigate in
the future for PulseCore.

Koronkevich and Bowman (2024) study structuring heaps using multiple universes, storing total
heap-reading functions at higher universe levels than the fragments of the heaps that they read.
However, their heap is acyclic, unlike ours where cycles within a universe level are allowed, and
they do not provide a program logic.

Conclusions. PulseCore is a foundational concurrent separation logic with a direct semantics in
dependent types. By stratifying the heap into universes levels, it provides many features of modern
separation logics, including PCM-based higher-order ghost state and dynamic invariant allocation,
with the limitation that it is predicative. We have used the logic to build a growing collection of
verified libraries, and even a real-world security critical application, giving us some confidence that
the logic is expressive and usable, and suggesting that we have made progress towards developing
high-assurance, concurrent systems code within dependently typed languages like F★.

https://github.com/FStarLang/FStar/issues/2814
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