
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Programming and Proving with Indexed Effects

ASEEM RASTOGI,Microsoft Research, India

GUIDO MARTÍNEZ, CIFASIS-CONICET, Argentina
AYMERIC FROMHERZ,Microsoft Research & CMU, USA

TAHINA RAMANANANDRO,Microsoft Research, USA

NIKHIL SWAMY,Microsoft Research, USA

Proving properties about effectful programs is hard. New application-specific abstractions based on indexed

monads can help simplify programming and proving. However, existing languages lack support to develop

and use such abstractions.

The main contribution of this paper is a type-and-effect system that enables program proof developers to

design new effect-typing disciplines based on indexed monads, making proofs simpler and more abstract and

allowing programs to be developed in a direct, applicative syntax while automatically elaborating them into a

core language of pure, total functions where the monadic structure is made explicit.

We have implemented our system as a new feature in the F
★
programming language, enhancing its existing

user-defined effect system to cover all forms of indexed monads. In doing so, we have also simplified the core

language of F
★
, allowing us to derive basic Dijkstra monad constructions in F

★
that were previously primitive.

Finally, we present several case studies developing new indexed monad constructions to structure program

proofs in settings including information flow control, algebraic effects, and low-level binary format parsers.

1 INTRODUCTION
Xavier Leroy, in his Royal SocietyMilner Award lecture,

1
claims that purely functional programming

is the shortest path to writing and proving a program. Few practitioners of program proofs will

disagree—programming and reasoning in the presence of computational effects is hard. However,

effectful programming is indispensable in many domains, e.g., when building low-level or high-

performance software. We are interested in techniques that simplify the construction of proofs of

correctness and security of effectful programs, starting by representing effects using monads.
While Moggi [1989] and Wadler [1992] firmly established monads as both a categorical and

programmatic basis on which to develop effectful programs, proving the correctness of programs

with monadic effects is somewhat less settled. Several researchers have proposed variants of

monads, with richer indexing structure, in support of more precise static reasoning. Many of these

proposals have been profitably used in a variety of settings, yet no single proposal has emerged as

universal—given the diversity of program reasoning tasks, universality of structures in support of

reasoning is hard to expect or imagine. Rather, we embrace the diversity of indexed monads and

seek to use them to structure and simplify program proofs. We briefly survey the landscape.

Monads. From a programmer’s perspective, a monad M is a typeclass representing an effectful

computation, supporting the following two combinators: return: a → M a, to promote a pure value

to an M computation; and bind: M a → (a → M b)→ M b, to sequentially compose two M-computations,

where bind is associative and return is both a left and right unit of bind. A great many computational

effects have been shown to be expressible as monads, including state, exceptions, continuations,

parsing, printing, asynchrony, and many others besides. However, the type M a is relatively uninfor-

mative. A program with type M a may exhibit any of the effects encoded in M when executed, e.g., it

may read and write the state arbitrarily. When trying to prove a program correct, this imprecision

is usually unacceptable, leading to several indexed monad structures with adaptations of the monad

laws to account for the indices.

1
https://xavierleroy.org/talks/Milner-award-lecture.pdf

https://xavierleroy.org/talks/Milner-award-lecture.pdf

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

Graded monads. Katsumata’s (2014) graded monads are a monad-like typeclass G indexed by

a monoid {I, ⊕, 𝜖}, whose return and bind have the following signatures: return : a → G a 𝜖 and

bind : G a i→ (a → G b j)→ G b (i ⊕ j). By choosing the indexing monoid carefully, one can recover

some precision in static reasoning. For instance, the indices can be used to constrain the mem-

ory locations a computation may write, ensuring, depending on the index i, that a given G a i

computation leaves certain parts of memory unchanged.

Parameterized monads. Atkey’s (2009) parameterized monads are a typeclass A with two indices,

with the following combinators: return : a→ A a p p and bind: A a p q→ (a → A b q r) → A b p r. Given

an e : A a p q, the index p is an abstraction of the resources expected by e, and q abstracts the resources

remaining after e executes. Parameterized monads have been used to reason about a variety of

effects, including, for example, message passing programs using session types.

Hoare monads. Working in a dependently typed setting, and aiming initially to prove stateful

programs correct in Coq, Nanevski et al. [2008] developed the Hoare monad, a typeclass H, in-

dexed by memory predicates p : mem → prop and q:a → mem→ prop, with combinators of the form

return : x:a → H a (p x) p, meaning that a pure computation returns an x:awhile preserving any pred-

icate p x on the state; and bind : H a p q→ (x:a → H b (q x) r) → H b p r, a combinator whose indexing

structure represents the rule for sequential composition in Hoare logics. Encoding a Hoare logic in

the indices is a powerful concept, and Hoare monads have been used to prove the correctness of

many programs in a variety of program logics. But, even among Hoare monads, several variants

exist. For example, in some versions, the postcondition q is a relation on a pair of memory states,

i.e., q: mem→ a→ mem → prop.

Dijkstra monads. Seeking to compute verification conditions for programs with effects beyond

just state, Swamy et al. [2013] proposed Dijkstra monads. Refined further by Swamy et al. [2016],

Ahman et al. [2017] and Maillard et al. [2019], a Dijkstra monad D is a monad-like typeclass

where the indexing structure is itself a monad {M, return, bind}. That is, D has the following combi-

nators: return: x:a → D a (M.return x), and bind: D a m→ (x:a → D b (n x))→ D b (M.bind m n). Intuitively,

the computational monad D is abstracted by the specification monad M, with a morphism between

the two encoded in the indexing structure. Dijkstra monads are at the core of the F
★
programming

language [Swamy et al. 2016] and have been used in the verification of several large develop-

ments [Bhargavan et al. 2017].

1.1 New hybrid constructions
A central observation of this paper is that while each of these indexed monad structures offer

reasoning principles for effectful programs on their own, using them in combination yields a

multitude of other structures that can help in producing simpler, more structured proofs of effectful

programs. We present new hybrid constructions involving graded Hoare monads, parameterized

Dijkstra monads, graded Dijkstra monads, graded doubly-Hoare monads, and other such hybrid

structures, exploiting them to simplify the proofs of programs ranging from the correctness of

binary format serializers to information flow control.

A starting point to effectively exploit these exotic indexed structures for programming and

proving is a unified, programmable framework supporting them all. The syntactic overhead of

programming directly with monadic structures is prohibitive–consider that programming with

even regular monads is tedious absent Wadler’s classic do-notation. However, whereas all monadic

programs benefit from the do-notation, other indexed monads, not being instances of the monad

typeclass, do not enjoy such benefits. E.g., in Haskell, parameterized monads are captured by

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

3

the Monadish typeclass,2 for which no special syntax is available. Given the diversity of indexing

structures we wish to use, a single typeclass to cover them all is infeasible.

1.2 Type-and-effect directed elaboration
Lacking a typeclass for our structures, we develop a new language feature to support a type-and-

effect directed elaboration of source programswritten in a direct, applicative syntax into any indexed

monad structure. Our feature, indexed effects, is usable with any monad-like type constructor L,

with an arbitrary number of indices, and combinators return : x:a → L a ®𝑖 and bind : L a ®𝑖 → (x:a →
L b ®𝑗) → L b ®𝑘—note the indices may vary arbitrarily in return and bind. Given such a signature, our

algorithm allows programs to be developed in anML-like applicative syntax, while elaborating them

automatically into the underlying monad-like combinators on L. We have implemented indexed

effects in F
★
, enhancing its user-defined effect system, previously limited to Dijkstra monads only,

to cover all forms of indexed monads.

For a first example, consider the graded monad gst (a:Type) (t:tag), with tag = R | RW shown below,

with a refinement type to state that read-only computations do not modify the state, and with

actions to read and write the state.

let state = int type tag = R | RW let (⊕) t0 t1 = match (t0, t1) with | (R, R) → R | _ → RW

let gst (a:Type) (t:tag) = s0:state→ r:(a & state) { t=R =⇒ s0 == snd r }

let return (x:a) : gst a R = 𝜆s → x,s

let bind (f:gst a t0) (g: a → gst b t1) : gst b (t0 ⊕ t1) = 𝜆s0→ let x, s1 = f s0 in g x s1

let read () : gst state R = 𝜆s → s,s let write (s:state) : gst unit RW = 𝜆_→ (), s

To increment the state, one would write bind (read()) (𝜆x→ write (x + 1)) and many dependent type

systems could infer the type gst unit RW. For such a simple program, this may seem adequate.

However, as the indices become richer, explicitly monadic programming can be an obstacle.

With our new support for user-defined indexed effects in F
★
, we can turn the gst monad into a

new indexed computation type GST, while also indicating to the system to implicitly re-index types

when needed, e.g., in the branches of conditional computations.

let subcomp (f:gst a t0 { ∃t. t1 == t0 ⊕ t }) : gst a t1 = f

let if_then_else (f:gst a t0) (g:gst a t1) (_:bool) = gst a (t0 ⊕ t1)

effect { GST (a:Type) (t:tag) with { repr = gst; return; bind; read; write; subcomp; if_then_else } }

With these definitions in place, one can write if b then (write (read () + 1); 0) else read(), while

the framework infers the computation type GST int RW and internally elaborates the program into

the following explicitly monadic form:

if b then subcomp (bind (read()) (𝜆 x → bind (write (x + 1)) (𝜆 _→ return 0))) else subcomp (read())

Effect definitions can also be layered, e.g., we could add a layer to represent exceptions on top of

the GST effect, with implicit coercions to move between them.

1.3 Formalization of indexed effects and simplification to the theory of F★

To formalize our system, we design Indexed Monadic F
★
(IMF

★
), a surface language with user-

defined indexed effects, and a simple type-and-effect directed elaboration of IMF
★
programs into

TotalF
★
, a core lambda calculus with dependent and refinement types. Our main theorem proves

that the translation from IMF
★
to TotalF

★
is well-typed (§3).

Prior to our work, the core calculus of F
★
included a primitive notion of Dijkstra monads [Ahman

et al. 2017; Swamy et al. 2016]. Indeed, all other Dijkstra monads in F
★
built upon this primitive

notion. With IMF
★
, Dijkstra monads can be defined as just another indexed effect and need no

2
https://hackage.haskell.org/package/twilight-stm-1.2/docs/Control-Concurrent-STM-Monadish.html

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

longer be primitive. As result, not only does our work add support for programming with rich

indexing structures in F
★
, but it also simplifies the core logical underpinnings of F

★
to just TotalF

★
.

Simplifying the core is a significant advancement for a proof assistant.

1.4 Applications of the new hybrid constructions
We present three case studies of indexed effects at work. The first is a new graded, Hoare monad

for information flow control and functional correctness of stateful programs (§2). Next, we show

a library of generic algebraic effects and handlers, using a graded Dijkstra monad to verify heap-

manipulating programs in this framework (§4). Finally, we improve support for low-level message

formatting in EverParse [Ramananandro et al. 2019], a library of monadic parser and formatter

combinators. By layering two parameterized monad-indexed monads on top of EverParse’s existing

use of a Hoaremonad for C programs, we obtainmore concise programs and better proof automation,

while yielding verified C code devoid of performance overhead (e.g., due to intermediate allocations

and copies) inherent in the purely functional formatters developed previously (§5)
3
.

Separately, providing evidence of the usefulness of our work at scale, indexed effects in F
★
have

already been used extensively in Steel [Fromherz et al. 2021; Swamy et al. 2020], a dependently typed,

concurrent separation logic shallowly embedded in F
★
, using an indexed monad with six indices

to capture various components of Steel’s logic. Additionally, Bhargavan et al. [2021] use indexed

effects in F
★
to reason about properties of a global, interleaved execution trace of cryptographic

protocol sessions, using it at the core of a system that partially automates symbolic proofs of

cryptographic security (§6).

In all these cases, effect indices provide an abstraction to reason about effectful programs. When

these indices come from familiar algebraic structures like monoids and monads, proofs of effectful

programs can be reduced to purely functional programming, following Xavier Leroy’s guidance.

The diversity of our experience encourages us to conclude that richly indexed effects, coupled

with simple language support for elaboration, allows program proof developers to craft new

abstractions and benefit from simpler proofs, while also enjoying a direct programming style with

automatic inference and elaboration into an small, core calculus of pure computations. We hope

that a unifying framework like ours will make it easier for the programmers to adopt and benefit

from the great many indexing structures from the literature.

2 INDEXED EFFECTS IN F★, BY EXAMPLE
This section introduces indexed effects in F

★
progressively, starting with a simple, non-indexed

state monad and working our way eventually to a graded, 2-state Hoare monad for functional

correctness proofs for stateful programs. We emphasize two points:

• By carefully designing the indexing structure on a monadic effect, it is possible to reason

about programs in an abstraction well-suited to the reasoning task at hand.

• Regardless of the indexing structure, e.g., whether no indices are used at all, or if the indices

are drawn from some rich logic, our type-and-effect directed elaboration helps in hiding the

complexity of the underlying semantic models of an effect from a programmer, providing,

in addition to syntactic elaboration, features such as automated subsumption and coercion

between effects.

2.1 Background on F★ and a non-indexed effect for state
We start with a review of F

★
and show how to define a simple effect based on an ordinary state

monad.

3
We submit all the examples presented in the paper as anonymous supplementary material.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

5

F
★
is a program verifier and a proof assistant based on a dependent type theory with a countable

hierarchy of predicative universes (like Coq or Agda). Proofs in F
★
are partially automated using

the Z3 SMT solver [de Moura and Bjørner 2008], although it also has a metaprogramming system

inspired by Lean and Idris (called Meta-F
★
[Martínez et al. 2019]) that allows using F

★
itself to build

and run tactics for constructing programs or proofs. Rather than focusing on purely functional

programming, F
★
has been used extensively to build security-critical, high-performance, low-level

software in several embedded DSLs. The resulting code has been deployed in a variety of settings,

including theWindows kernel, the Linux kernel, the Microsoft Azure cloud, the Firefox web browser,

and several other applications where high-assurance effectful programs are necessary. In service of

these scenarios, an integral part of F
★
is its ability to be extended with user-defined effects. To date,

effects in F
★
have been tied to Dijkstra monads [Ahman et al. 2017; Maillard et al. 2019; Swamy

et al. 2013]—no longer, as we will soon see.

Basic syntax. F★ syntax is roughly modeled on OCaml (val, let, match, etc.). Binding occurrences

b take the form x:t, declaring a variable x at type t; or #x:t indicating that the binding is for an

implicit argument. The syntax 𝜆b1 ... b𝑛 → t introduces a lambda abstraction (metavariable t ranges

over both types and terms), whereas b1 → ...→ b𝑛 → C is the shape of a curried function type with

computation type C (more about them shortly). Refinement types are written b{t}, e.g., the type

x:int{x≥ 0} represents natural numbers. We define squash t as the unit refinement _:unit{t}, which

can be seen as the type of (computationally irrelevant) proofs of t. As usual, we omit the type in a

binding when it can be inferred; and for non-dependent function types, we omit the variable name.

E.g., the type #a:Type → #m:nat→ #n:nat→ vec a m → vec a n→ vec a (m + n) represents the append

function on vectors, where the two explicit arguments and the return type depend on the three

implicit arguments marked with ‘#’. We mostly omit implicit binders, except when needed for

clarity, treating all unbound variables in types as prenex quantified, writing the type of append as

just vec a m → vec a n → vec a (m + n). We also omit universe annotations.

Returning to the computation types C, F★ distinguishes computations from values in a manner

similar, though not identical, to Levy’s (2004) Call-By-Push-Value calculus. Computation types

include Tot t (x:t1→ t2 is a shorthand for x:t1→ Tot t2) for pure, total computations. Another built-

in computation type is Lemma (requires p) (ensures q), which is the type of a computation which

when executed in a context validating p terminates in a context validating q, i.e., it can be seen as

sugar for squash p → squash q. When p is trivial, we simply write Lemma (ensures q) or Lemma q.

F
★
also allows users to define new computation types, however, to date, every user-defined

computation type was required to be a Dijkstra monad of predicate transformers, either axioma-

tized [Swamy et al. 2016] or derived using a CPS transformation of programs in a sub-language

of effect definitions [Ahman et al. 2017]. Defining even a simple non-indexed state monad as

computation type was not possible, until now.

A simple state monad and its corresponding effect. Defining a state monad in F
★
is easy, just as in

many functional languages.

let st (a:Type) (s:Type) = s → a & s (∗ & is the tuple type constructor ∗)
let return (x:a) s : st a s = 𝜆s → x, s

let bind (f:st a s) (g:a→ st b s) : st b s = 𝜆s → let x, s' = f s in g x s'

let get () : st s s = 𝜆s → s, s

let put (x:s) : st unit s = 𝜆_ → (), x

One can, of course, write programs like this bind (get()) (𝜆s → put (s + 1)) to increment the state,

and F
★
will infer the type st unit int for it. However, this style quickly becomes cumbersome.

While many languages offer a do-notation for monads (F
★
does too) and in the case of ordinary

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

monads such as this one, the do-notation is adequate, indexed effects provide an alternative which

scales also to indexed monads. With indexed effects, F
★
allows users to define a new effect, using

the notation below:

effect { ST (a:Type) (s:Type) with { repr = st; return; bind; get; put } }

We use the term “effect” to refer to a computation type constructor. Here, ST is an effect and the

definition above introduces a new user-defined computation type, ST a s, whose underlying represen-

tation is st a s, supporting the return and bind combinators, and two actions ST?.get : unit→ ST s s

and ST?.put : s → ST unit s—the notation ST?.op names the operation op in the ST effect declaration.4

With this in place, one can write ST?.put (ST?.get() + 1) and have F
★
infer the type ST unit int,

while elaborating the program internally to the explicitly monadic notation shown earlier. Since

computation types can appear only to the right of an arrow, corresponding to a call-by-value

evaluation strategy, and by enforcing left-to-right evaluation order, the elaboration into the explicitly

monadic notation becomes algorithmic.

For ordinary monads, this may not seem like much. Indeed, what we have here corresponds

closely to a type-and-effect elaboration into explicitly monadic notation developed previously for

ML-like programs and ordinary monads by Swamy et al. [2011]. A main contribution of this paper

is to show how this basic idea can be generalized to work in a dependently typed setting with

indexed monads of all flavors.

2.2 Indexed effects, in a nutshell
An effect declaration in F

★
allows promoting any indexed monad m into an effect M. Doing so

requires:

(1) A representation type, m t 𝑖, for an arbitrary arity |𝑖 |.
(2) A return, whose type is of the form x:a → m a 𝑝, for some 𝑝.

(3) A bind, whose type is of the form m a 𝑝 → (x:a → m b 𝑞) → m b 𝑟 , for some 𝑝, 𝑞, 𝑟

(4) Zero or more actions, 𝑎 where each 𝑎𝑖 has a type of the form 𝑥𝑖 : 𝑡𝑖 →𝑚 𝑠𝑖 𝑝𝑖 .

(5) An optional subsumption combinator, subcomp, _:m a 𝑝 { pre }→ m a 𝑞, which allows re-indexing

an m a 𝑝 to an m a 𝑞, when pre : prop is valid.

(6) An optional branching combinator, if_then_else whose type has the form m a 𝑝 → m a 𝑞 →
bool→ Type, such that for all x:m a 𝑝, y:m a 𝑞, and b:bool, if b then subcomp x else subcomp y

has type if_then_else x y b.

Having introduced an effect M based on m, our type-and-effect system infers computation types

M a 𝑖 for programs using the effectful actions M?.𝑎𝑖 , and automatically elaborates them into the

underlying monadic operations on m, while generating verification conditions to show that the

inferred type of a program is compatible with a user-provided annotation, implicitly re-indexing

terms as needed using subcomp and if_then_else. The resulting verification conditions can be

dispatched in F
★
using a variety of techniques, ranging from SMT solving to interactive proofs

with tactics.

Composing multiple effects. Further, given two effect declarations M and N with representation

types m and n, F★’s effect system supports implicitly lifting M-computations to N-computations if the

programmer supplies a combinator lift: _:m a 𝑖{ pre }→ n a 𝑗 .

As we will soon see, indexed effects allow one to design multiple, effect-based domain-specific

languages in F
★
, and for those languages to be composable, while enjoying the full native syntax of

F
★
(with let bindings, pattern matching, recursion, etc.), verification condition generation, and proof

4
Strictly speaking, to reference the actions in the GST effect of §1.2, we should have written GST?.read and GST?.write,
though we omitted the “GST?.” prefix for simplicity.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

7

automation in F
★
, with a foundation of trust built within F

★
upon a model of effectful computations

as indexed monads.

2.3 A Hoare monad for functional correctness proofs of stateful programs
To prove the correctness of stateful programs, Nanevski et al. [2008] proposed to refine the state

monad st a s = s → a & s with predicates drawn from a Hoare logic. In our setting, this can be

encoded like so:

let hst a s (p:s → prop) (q:s → a → s → prop) = s0:s{p s0} → x:(a & s) { q s0 (fst x) (snd x) }

The type hst a s p q represents a state-passing computation which, when run in an initial state

s0:s validating the precondition p s0, returns a result:a and a final state s1:s that validates the

postcondition q s0 result s1. One can define the following combinators.

let return (x:a) : hst a s (𝜆 _→⊤) (𝜆 s0 r s1 → s0==s1 ∧ r==x) = 𝜆s→ x, s

let bind (f:hst a s p𝑓 q𝑓) (g: (x:a → hst b s (p𝑔 x) (q𝑔 x)))

: hst b s (𝜆 s0→ p𝑓 s0 ∧ (∀ x s1. q𝑓 s0 x s1 =⇒ p𝑔 x s1)) (𝜆 s0 r s2→ (∃ x s1. q𝑓 s0 x s1 ∧ q𝑔 x s1 r s2))

= 𝜆s0→ let x, s1 = f s0 in g x s1

This is different from a classic Hoare monad, for a few reasons. First, the postcondition we use

here is a predicate covering over both the initial and final state—a so-called, 2-state postcondition.

Further, a standard Hoare monad as sketched in Nanevski et al. [2008] has a bind with a signature

resembling Atkey’s parameterizedmonad in that the postcondition of the fmatches the precondition

of g. However, our bind for hst is designed so that it is parametric in the pre- and postconditions of

both f and g, making type inference and verification condition generation for hst easier. To enable

this, we must also strengthen the precondition of the resulting computation with a requirement that

q𝑓 is stronger than p𝑔, while, to retain precision, the final postcondition is also strengthened with

both q𝑓 and q𝑔. Non-standard or not, hst can be easily promoted to an effect in F
★
, since the effect

mechanism places no restrictions on the indexing structure. But, before promoting hst to an effect,

we’ll define some actions, a subsumption rule, and a type for composing branching computations.

Actions for hst. The get and put actions are computationally equivalent to their unrefined

counterparts in st. In hst, we give them precise logical specifications.

let get () : hst s s (𝜆 _→⊤) (𝜆 s0 x s1 → s0 == s1 ∧ x == s1) = 𝜆s → s, s

let put (x:s) : hst unit s (𝜆 _→⊤) (𝜆 _ _ s1 → x == s1) = 𝜆_ → (), x

Subsumption, or the Hoare rule of consequence. Hoare logics typically include a rule of consequence,
enabling preconditions to be strengthened and postconditions to be weakened. Our Hoare logic

encoded in hst also admits such a rule, which we can encode as a subsumption combinator for

re-indexing hst, shown below.

let subcomp (x:hst a p q {relate_pre_post p p' q q'}) : hst a p' q' = x

𝑤ℎ𝑒𝑟𝑒 relate_pre_post p p' q q' = (∀ s. p' s =⇒ p s) ∧ (∀ s0 x s1. p' s0 ∧ q s0 x s1 =⇒ q' s0 x s1)

Branching. Whereas bind is required to specify how to sequentially compose computations,

within our framework, it is also possible to specify how to type and compose computations under

branches. In this case, to typecheck if b then f else g it suffices to take the join of their types by

simply lifting the conditional to the level of the indices.

let ite (f:hst a s p𝑓 q𝑓) (g:hst a s p𝑔 q𝑔) b = hst a s (if b then p𝑓 else p𝑔) (if b then q𝑓 else q𝑔)

Finally, an effect definition promotes hst to HST, as shown below.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

effect { HST (a:Type) (s:Type) (p:s→ prop) (q:s → a→ s → prop) with

{ repr = hst; return; bind; subcomp; if_then_else = ite; get; put }}

To write and prove stateful programs in HST, one starts by picking a model for mutable memory.

To illustrate, we choose just a store that maps natural number memory locations (loc) to integers,

where Map.t is a total map from F
★
’s standard library, supporting operations to select (sel) and

update (upd) keys in the map. We build derived actions to read and write locations in memory,

giving them precise specification in HST. We do not model dynamic allocation nor typed references,

as they are orthogonal—several other memory models in F
★
support such features [Ahman et al.

2018; Protzenko et al. 2017; Swamy et al. 2020] and are usable with indexed effects.

let loc = nat let store = Map.t loc int

let read (x:loc) : HST int store (𝜆 _ →⊤) (𝜆 s0 v s1 → s0 == s1 ∧ v = sel s1 x) = sel (HST?.get ()) x

let write (x:loc) (v:int) : HST unit store (𝜆 _→⊤) (𝜆 s0 _ s1 → s1 == upd s0 x v)

= HST?.put (upd (HST?.get()) x v)

Putting several features together, we implement and prove programs like so, where we tag the

pre- and postcondition with the (semantically irrelevant) keywords requires and ensures just to

improve readability:

let mod_or_sqr (b:bool) (x y:loc) : HST unit store

(requires 𝜆s→ sel s x > 0)

(ensures 𝜆s0 _ s1 →∃v. (if b then v ≤ sel s0 x else v ≥ sel s0 x) ∧ s1 == upd s0 y v)

= if b then write y (read y % read x) else write y (read x ∗ read x)

For even this simple program, the type-and-effect based elaboration is a significant benefit. First,

in each branch of the condition, we have imperative code developed directly in an applicative

notation, rather than requiring it to be explicitly monadic. Next, although each branch has a different

type, the if_then_else combinator provides a form of dependent pattern matching, automatically

giving the conditional a type that depends on the branch condition b. Finally, when the user

annotates a specification for a function, the system automatically applies the rule of consequence,

building a verification condition, which, in this case, is automatically discharged by SMT.

Without the effect-based elaboration, one could try to write a program directly in the hst monad.

It would look something like this (where read_hst and write_hst are the hst analogs of read and

write), where one essentially has to build a Hoare-style derivation by hand. Even if the system is

able to infer all the missing implicit arguments (shown as underscores), which it cannot, in this

case, this style is verbose and obscures the program beyond recognition.

let mod_or_sqr (b:bool) (x:loc) (y:loc)

: hst unit store (𝜆 s → sel s x > 0)

(𝜆 s0 _ s1 →∃v. (if b then v ≤ sel s0 x else v ≥ sel s0 x) ∧ s1 == upd s0 y v)

= subcomp _ _ _ _ _ _

(if b then subcomp _ _ _ _ _ _

(bind _ _ _ _ _ _ _ (read_hst y) (𝜆 v0→
bind _ _ _ _ _ _ _ (read_hst x) (𝜆 v1→
bind _ _ _ _ _ _ _ (lift_pure_hst _ _ (v0 % v1)) (𝜆 i→
write_hst y i))))

else subcomp _ _ _ _ _ _

(bind _ _ _ _ _ _ _ (read_hst x) (𝜆 v0→
bind _ _ _ _ _ _ _ (read_hst x) (𝜆 v1→
write_hst y (v0 ∗ v1)))))

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

9

Sub-effects. If you look closely at the elaboration above, you may wonder about lift_pure_hst

in the then-branch. What’s happened here is that our system has automatically lifted a pure

computation with a non-trivial precondition into the hst effect. We explain this in greater detail

in §3.4, summarizing the main idea here. At the core of F
★
, pure computations with non-trivial

preconditions are typed in a Dijkstra monad PURE a wp, a type for conditionally pure computations

which when evaluated in a context validating wp p : prop, for any p : a → prop, return a v : a vali-

dating p v. In this case, we have a term v0%v1 which, due to a possible division by zero, has type

PURE int (𝜆p → v1 ≠0 ∧ (v1≠0 =⇒ p (v0 % v1))), indicating that it is only safe run the term in context

where v1 ≠0 is valid. To incorporate such conditionally pure computations within HST, one can

specify that PURE is a sub-effect of HST, as shown below.

let pure a (wp : (a → prop) → prop) = unit → PURE a wp

let lift_pure_hst (f : pure a wp) : hst a

(requires 𝜆_→ wp (𝜆 _→⊤))
(ensures 𝜆s0 v s1 → s0 == s1 ∧ ¬(wp (𝜆 y →¬(y == v))))

= 𝜆s→ f(), s

sub_effect PURE{HST = lift_pure_hst

Our system maintains a directed acyclic graph of sub-effects, ensuring that two effects are related

by sub-effecting in at most one way. During elaboration, this allows us to unambiguously lift one

effect to another, while relating the indexing abstractions appropriately. In this case, lift_pure_hst

interprets the predicate transformer index wp as a Hoare-style precondition (applying it to a trivial

postcondition), and as a postcondition, relying on a double-negation transformation of the wp.

From even this simple example, we hope to illustrate that due to the prohibitive syntactic

overhead, novel indexed monad constructions, despite providing very useful abstractions for

program reasoning, are difficult to adopt in practice. Instead, with our effect elaboration system,

one can freely explore the design space of indexed monads to build suitable abstractions applicable

to programs that humans can write, understand, and prove correct, with good automation. As an

instance of such an exploration, we present next a novel refinement of HST, indexing it additionally

with a non-trivial monoid to track read and write effects and information flows, while still benefiting

from automated elaboration.

2.4 Refining HST with information flow control
While the Hoare logic encoded in the HST effect is expressive enough for functional correctness

proofs, the specifications it permits are relatively unstructured—pre- and postconditions are just

predicates on the entire store—and are limited to properties of a single execution of a program. In

this section, we present HIFC, a refinement of HST, based on a graded Hoare monad for state, where

computation types of the form HIFC a reads writes flows pre post constrain the set of memory

locations read and written, and the dependences among them, in addition to the Hoare-style pre-

and postconditions. We summarize our construction here, with the full details in the appendix.

To define the effect HIFC, we’ll start with a indexed monad representation, hifc, refining hst.

let label = set loc let flow = label & label let flows = list flow

let hifc a (r w:label) (fs:flows) p q = f:hst a store p q { writes f w ∧ reads f r ∧ respects f fs }

Interpreting the write index, writes f w, states that all locations not in w are unchanged when

running f in any state. The reads predicate involves a relational interpretation, similar to Benton

et al. [2006], stating that runs of f on stores that differ only on unread locations are equivalent. The

respects relation is the main statement of noninterference, also stated relationally—information

flows from l to m only if there exists some (src, dest) ∈ flows such that l ∈ src and m ∈ dest.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

Next, we define return, to lift pure terms into the hifc abstraction; and bind to show that the

abstraction of hifc is stable under sequential composition. The proof of the correctness of bind is

non-trivial and requires about a few hundred lines of auxiliary lemmas in F
★
, but this proof is done

once and for all. We just show the signatures.

val return (x:a) : hifc a {} {} [] (𝜆 _→⊤) (𝜆 s0 r s1 → s0 == s1 ∧ r == x)

val bind (f:hifc a r0 w0 fs0 p q) (g: (x:a→ hifc b r1 w1 fs1 (r x) (s x)))

: hifc b (r0 ∪ r1) (w0 ∪ w1) (fs0 @ add_source r0 (({}, w1)::fs1))

(𝜆 s0→ p s0 ∧ (∀ x s1. q s0 x s1 ∧ modifies w0 s0 s1 =⇒ r x s1))

(𝜆 s0 r s2 → (∃ x s1. (q s0 x s1 ∧ modifies w0 s0 s1) ∧ (s x s1 r s2 ∧ modifies w1 s1 s2)))

where add_source r fs = List.map (𝜆 (src, sink) → (src ∪ r, sink)) fs and @ is list concatenation

The type of bind f g has several interesting elements. bind f g reads (and writes) the union of the

read (and write) sets of f and g. More subtly, the flows of bind f g are the flows of f (fs0), together

with the flows of g (({}, w1)::fs1) augmented with flows from the locations read by f (r0), since g’s

argument is tainted by f’s reads. This way of computing flows is more precise than in prior monadic

IFC systems, which usually consider that all locations read by f can flow to all locations written by

g. Finally, showing the use of the write index for framing, both the pre- and postcondition exploit

the invariant that f does not modify locations outside w0 and g outside w1 (where the predicate

modifies w s0 s1 states that s0 and s1 agree on all locations outside w.). As such, the write index

encodes a form of dynamic framing [Kassios 2006].

We can show that the triple of additional indices of HIFC, (reads, writes, flows) form a monoid

(under a suitable equivalence relation) whose unit is {}, {}, [] and whose elements can be composed

with ⊕ (shown below), which is the indexing pattern of a graded monad, used on return and bind.

(r0, w0, f0) ⊕ (r1, w1, f1) = r0 ∪ r1, w0 ∪ w1, f0 @ add_source r0 (({}, w1)::f1)

Packaging hifc as an effect HIFC, together with a subsumption relation that allows widening the

reads, writes and flows sets together with the Hoare rule of consequence; a branching combinator;

and actions to read andwrite individual locations, allows us to write and prove effectful programs for

both correctness and security, by reasoning only about their indices. For example, write l1(read l0)

is inferred to have type HIFC unit {l0} {l1} [{l0}, {l1}] (𝜆_ →⊤) (𝜆s0_ s1→ sel s1l1== sel s0l0).

Refining flows with Hoare reasoning. Monadic label-based information flow is inherently imprecise,

since it conflates data and control dependence. To illustrate, consider read h; write l (read l + 1)

which has the type HIFC unit {h, l} {l} [({h}, {l})] (𝜆_→⊤) (𝜆s0_ s1→ sel s1l = sel s0l + 1), suggesting

that it leaks information from h to l, when in reality no such flow exists since the read h is redundant.

However, HIFC’s pre- and postconditions can be used to recover precision. The re-indexing coercion,

refine, allows removing a flow f from HIFC a r w (f::fs) p q when the Hoare specifications p and q

allow proving that the f-flow is spurious.

val refine (_: (unit→ HIFC a r w (f::fs) p q) {(∀ from to v. from ∈ fst f ∧ to ∈ snd f ∧ from ≠to =⇒
(∀ s0 x x' s1 s1'. (p s0 ∧ p (upd s0 from v) ∧ q s0 x s1 ∧ q (upd s0 from v) x' s1' ∧

modifies w s0 s1 ∧ modifies w (upd s0 from v) s1') =⇒
sel s1 to == sel s1' to))}) : unit→ HIFC a r w fs p q

Using refine (which the programmer must explicitly apply), we can revise the type of our example

term to HIFC unit {h, l} {l} [] ..., removing the spurious flow.

We have seen how in the type of bind the Hoare specifications are improved using the write

index by internalizing framing. Conversely, with refine, Hoare specifications also improve the

precision of the information flow labels, illustrating the useful interplay between the two indexing

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

11

constant 𝑇 ::= unit | Type𝑢 | sum | inl | inr computation type 𝐶 ::= Tot 𝑡
term 𝑒, 𝑡 ::= 𝑥 | 𝑇 | 𝑥 :𝑡1{𝑡2} | 𝑥 :𝑡 → 𝐶 | 𝜆𝑥 :𝑡 . 𝑒 | 𝑒1 𝑒2 | case𝐶 (𝑒 as 𝑦) 𝑥 .𝑒1 𝑥 .𝑒2

Fig. 1. Syntax of TotalF★

structures. Our point is that by designing hybrid indexed monads, one can obtain new reasoning

principles whose combination is more powerful than their components.

3 FORMALIZATION AND IMPLEMENTATION OF INDEXED EFFECTS
In this section we provide a semantics for indexed effects via a type-and-effect directed, type-

preserving translation to a core lambda calculus with dependent and refinement types. The essence

of the translation is that it unfolds a computation type into its underlying indexed monadic

representation. As a result, while the programmers may use indexed effects to build abstractions

for the ease of programming and proving, the structure of types still provides guidance as to how

the programs execute.

This translation semantics of indexed effects also allows us to minimize the formal core of F
★
.

Specifically, we can remove all the effectful features from it, including currently primitive Dijkstra

monads, as they can simply be encoded. This in itself is a significant advancement, since any further

metatheory of F
★
’s core no longer has to consider Dijkstra monads. The translation semantics may

also provide a way for other proof assistants, many of which have core calculi resembling TotalF
★
,

to implement indexed effects, though some of the details, like refinement types, may differ.

We begin by describing the target language of the translation, and the new core calculus of

F
★
, that we call TotalF

★
. We then present Indexed Monadic F

★
(IMF

★
), a surface language with

user-defined indexed effects, and present a syntax-directed, type-and-effect driven translation

from IMF
★
to TotalF

★
; we prove that the translation is type-preserving implying that the typing

derivations in IMF
★
can be soundly interpreted in TotalF

★
. We also discuss several implementation

aspects of indexed effects in the F
★
typechecker.

3.1 TotalF★: The new core calculus for F★

Figure 1 shows the syntax of TotalF
★
. It includes proof-irrelevant refinement types, dependent

functions, dependent patternmatchingwith case (with explicitly annotated return computation type

𝐶), and a non-cumulative predicative universe hierarchy (Type𝑢). We elide universe annotations in

the rest of the section. TotalF
★
has one computation type Tot 𝑡 for total computations. The calculus

is essentially an effectless fragment of EMF
★
[Ahman et al. 2017], the previous F

★
core. Though

terms and types are in the same syntactic class in TotalF
★
, we use 𝑒 and 𝑡 to distinguish them, when

it promotes clarity. Similarly, we use 𝑥 as term variables, and 𝑎 and 𝑏 as type variables.

The most distinctive feature of TotalF
★
is its use of a subtyping relation in type conversion.

Definitionally equal types are convertible. Subtyping also includes types related by refinement,

where Γ ⊨ 𝑡 is a proof-irrelevant logical entailment, implemented in F
★
using an SMT solver, or

handled by user-provided tactics.

𝑡0 →∗ 𝑡 𝑡1 →∗ 𝑡

Γ ⊢ 𝑡0 <: 𝑡1

Γ ⊢ 𝑡0 <: 𝑡 ′
0

Γ, 𝑥 :𝑡0{𝑡1} ⊨ 𝑡 ′1
Γ ⊢ 𝑥 :𝑡0{𝑡1} <: 𝑥 :𝑡 ′

0
{𝑡 ′

1
}

TotalF
★
is still simpler than the logical core of the full F

★
system, lacking inductive type definitions

and general pattern matching, recursive functions, and universe polymorphism. Importantly,

TotalF
★
lacks F

★
’s equality reflection, which is crucial to F

★
’s extensional type theory. We plan to

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

constant 𝑇 ::= unit | Type𝑢 | sum | inl | inr
term 𝑒, 𝑡 ::= 𝑥 | 𝑇 | 𝑥 :𝑡1{𝑡2} | 𝑥 :𝑡 → 𝐶 | 𝜆𝑥 :𝑡 . 𝑒 | 𝑒1 𝑒2 | let 𝑥 = 𝑒1 in 𝑒2

| case𝐶 (𝑒 as 𝑦) 𝑥 .𝑒1 𝑥 .𝑒2 | reify 𝑒 | 𝐹 .reflect 𝑒
computation type 𝐶 ::= Tot 𝑡 | 𝐹 𝑡 𝑒 effect label 𝑀 ::= Tot | 𝐹
effect definition 𝐷 ::= 𝐹 (𝑎 : Type) (𝑥 : 𝑡) {𝑒𝑟𝑒𝑝𝑟 ; 𝑒𝑟𝑒𝑡𝑢𝑟𝑛 ; 𝑒𝑏𝑖𝑛𝑑 ; 𝑒𝑠𝑢𝑏𝑐𝑜𝑚𝑝 }
lift definition 𝐿 ::= lift𝑀2

𝑀1

= 𝑒 signature 𝑆 ::= · | 𝐷, 𝑆 | 𝐿, 𝑆
type environment Γ ::= ·|𝑥 : 𝑡, Γ typing context Δ ::= 𝑆 ; Γ

Fig. 2. Syntax of IMF★

study these enhancements in the future, grateful to no longer have to consider their interaction

with Dijkstra monads.

3.2 IMF*: A surface language with user-defined indexed effects
IMF

★
models a surface language with support for user-defined indexed effects. Figure 2 shows the

syntax. IMF
★
adds effectful constructs to TotalF

★
. These include computation types 𝐹 𝑡 𝑒 (where 𝐹

is the effect, 𝑡 is the return type, and 𝑒 are the effect indices) in𝐶 , let bindings, and reify and reflect
coercions between the computation types and their underlying representations.

An effect definition 𝐷 defines an indexed effect 𝐹 with indices types 𝑥 : 𝑡 and combinators

𝑒𝑟𝑒𝑝𝑟 , 𝑒𝑟𝑒𝑡𝑢𝑟𝑛, 𝑒𝑏𝑖𝑛𝑑 , and 𝑒𝑠𝑢𝑏𝑐𝑜𝑚𝑝 , while lift
𝑀2

𝑀1

defines a combinator to lift 𝑀1 computations to 𝑀2

(effect 𝑀 ranges over Tot and 𝐹). Our implementation allows for specifying an optional custom

effect combinator for combining the branches of case–we discuss it in §3.5.

IMF
★
inherits the rest from TotalF

★
. Thus, the monadic structure of the terms is implicit in the

surface syntax, and is elaborated into explicit binds and lifts by the typing judgment.

The main typechecking judgment in IMF
★
has the form Δ ⊢ 𝑒 : 𝐶 ⇝ 𝑒 ′ stating that under a

typing context Δ, expression 𝑒 has computation type 𝐶 and elaborates to expression 𝑒 ′ in TotalF
★
.

When the elaborated term is not significant, we just write Δ ⊢ 𝑒 : 𝐶 .

To illustrate the typing rules, we use the graded state monad from Section 1, partly reproduced

here, as a running example. One difference, to illustrate the use of reflect, is that rather than

including the read and write actions as part of the effect definition, we show a desugared form

where we use GST.reflect to promote a gst a t to a GST a t computation type, separately from the

effect definition.

let gst (a:Type) (t:tag) = s0:state→ r:(a & state) { t=R =⇒ s0 == snd r }

let return a (x:a) : gst a R = 𝜆s → x,s

let bind a b t0 t1 (f:gst a t0) (g: a → gst b t1) : gst b (t0 ⊕ t1) = 𝜆s0→ let x, s1 = f s0 in g x s1

effect { GST (a:Type) (t:tag) with { repr=gst; return; bind } }

let read () : GST state R = GST.reflect (𝜆 s→ s,s)

let write s : GST unit RW = GST.reflect (𝜆 _ → (), s)

Typechecking effect definitions and lifts. While IMF
★
does not impose any constraints on the

layering or indexing structure of the effects, the types of the combinators in an effect definition

𝐷 are constrained to have specific shapes, as described in §1.2. Whereas previously we left the

additional index arguments in these combinators implicit, here, to be clearer, we make them explicit.

We write 𝐹 .repr, 𝐹 .bind etc. to denote 𝑒𝑟𝑒𝑝𝑟 , 𝑒𝑏𝑖𝑛𝑑 etc. for the effect 𝐹 in an ambient signature 𝑆 .

An effect definition for 𝐹 is typechecked as follows. 𝐹 .repr has a function type with argument

types matching the effect signature 𝐹 (𝑎 : Type) 𝑥 : 𝑡 . 𝐹 .return and 𝐹 .bind have monad-like shapes

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

13

T-Var

𝑥 : 𝑡 ∈ Γ

Δ ⊢ 𝑥 : 𝑡 ⇝ 𝑥

T-Let

Δ ⊢ 𝑒1 : 𝐶1 ⇝ 𝑒 ′
1

Δ ⊢ 𝜆𝑥 . 𝑒2 : 𝑥 :𝐶𝑡
1
→ 𝐶2 ⇝ 𝑒 ′

2
𝑥 ∉ 𝐹𝑉 (𝐶𝑡

2
)

Δ, 𝑓 : 𝐶1, 𝑔 : 𝑥 :𝐶𝑡
1
→ 𝐶2 ⊢ 𝐶.bind (lift𝐶

𝐶1

𝑓) (𝜆𝑥. lift𝐶
𝐶2

(𝑔 𝑥)) : 𝐶 ⇝ 𝑒 ′

Δ ⊢ let 𝑥 = 𝑒1 in 𝑒2 : 𝐶 ⇝ 𝑒 ′[𝑒 ′
1
/𝑓] [𝑒 ′

2
/𝑔]

T-Reify

Δ ⊢ 𝑒 : 𝐶 ⇝ 𝑒 ′

Δ ⊢ reify 𝑒 : 𝐶 ⇝ 𝑒 ′

T-Reflect

Δ ⊢ 𝑒 : 𝐶 ⇝ 𝑒 ′

Δ ⊢ 𝐹 .reflect 𝑒 : 𝐶 ⇝ 𝑒 ′

T-Sub

Δ ⊢ 𝑒 : 𝐶 ′⇝ 𝑒 ′ Δ ⊢ 𝐶 ′ <: 𝐶

Δ ⊢ 𝑒 : 𝐶 ⇝ 𝑒 ′

T-Case

Δ ⊢ 𝑒 : sum 𝑡1 𝑡2 ⇝ 𝑒 ′ Δ, 𝑦 : sum 𝑡1 𝑡2 ⊢ 𝐶 : Type⇝ 𝑡 ′ 𝑖 ∈ 1, 2 𝑇 = inl if 𝑖 = 1, inr o/w
Δ, 𝑥 : 𝑡𝑖 ⊢ 𝑒𝑖 : 𝐶𝑖 [𝑇 𝑥/𝑦] ⇝ 𝑒 ′𝑖 Δ, 𝑥 : 𝑡𝑖 , 𝑓𝑖 : 𝐶𝑖 [𝑇 𝑥/𝑦] ⊢ lift𝐶

𝐶𝑖
𝑓𝑖 : 𝐶 [𝑇 𝑥/𝑦] ⇝ 𝑒 ′′𝑖

Δ ⊢ case𝐶 (𝑒 as 𝑦) 𝑥 .𝑒1 𝑥 .𝑒2 : 𝐶 [𝑒/𝑦] ⇝ case𝑡 ′ (𝑒 ′ as 𝑦) 𝑥 .𝑒 ′′1
[𝑒 ′

1
/𝑓1] 𝑥 .𝑒 ′′2

[𝑒 ′
2
/𝑓2]

C-M

Δ ⊢ 𝐶 : Type⇝ 𝑡 ′

Δ ⊢ 𝐶 : Type⇝ Tot 𝑡 ′

SC-M

Δ ⊢ 𝐶1 : Type⇝ _

Δ ⊢ 𝐶 <: 𝐶1

Δ ⊢ 𝐶 <: 𝐶1

S-Sub

Δ ⊢ 𝑡1 : Type⇝ 𝑡 ′
1

Δ ⊢ 𝑡2 : Type⇝ 𝑡 ′
2

Δ ⊢ 𝑡 ′
1
<: 𝑡 ′

2

Δ ⊢ 𝑡1 <: 𝑡2

Fig. 3. IMF★ typing judgments (primed symbols are TotalF★ syntax)

with unconstrained 𝑥 : 𝑡 binders that may appear in the index terms 𝑒𝑓 , 𝑒𝑔, and 𝑒 . We return to the

𝐹 .subcomp combinator and the related if_then_else combinator later.

𝑆 ; · ⊢ 𝐹 .repr : 𝑎 : Type → 𝑥 : 𝑡 → Type
𝑆 ; · ⊢ 𝐹 .return : 𝑎 : Type → 𝑣 : 𝑎 → 𝑥 : 𝑡 → 𝐹 .repr 𝑎 𝑒
𝑆 ; · ⊢ 𝐹 .bind : 𝑎 𝑏 : Type → 𝑥 : 𝑡 → 𝐹 .repr 𝑎 𝑒𝑓 → (𝑥 :𝑎 → 𝐹 .repr 𝑏 𝑒𝑔) → 𝐹 .repr 𝑏 𝑒

Turning to our example, we haveGST.repr = gst, with one effect index t:tag.GST.return = return,
and in this case we have no additional index arguments. GST.bind = bind, with the t0 and t1

arguments to bind being the 𝑥 : 𝑡 binders. When applying these combinators, our implementation

relies on F
★
’s existing higher-order unifier to compute instantiations of the 𝑎, 𝑏 type arguments,

and the 𝑥 : 𝑡 arguments.

Finally, an expression 𝑒 defining a lift from 𝐹 to 𝐹 ′
is typechecked as a coercion from 𝐹 .repr to

𝐹 ′.repr , i.e., 𝑆 ; · ⊢ 𝑒 : 𝑎 : Type → 𝑥 : 𝑡 → 𝐹 .repr 𝑎 𝑒𝑓 → 𝐹 ′.repr 𝑎 𝑒 . Every user-defined effect in

IMF
★
gets an automatic lift from Tot: lift𝐹

Tot = 𝐹 .return. We discuss checks we impose on the lifts

collectively to ensure coherence in §3.5.

3.3 Type-and-effect directed elaboration
The typing rules from Figure 3 elaborate the implicitly monadic IMF

★
terms to TotalF

★
by inserting

binds and lifts. The placement of these combinators are purely syntax-directed, since computation

types can only appear immediately to the right of an arrow, and because we enforce left-to-right

evaluation order. However, applying the bind and lift combinators requires inference of the effect

indices and the combinator arguments (e.g., for the 𝑥 : 𝑡 binders in the combinator types). For this,

the system includes a declarative, non-coercive subtyping rule, and implicit arguments in all the

rules are chosen nondeterministically. In §3.5, we discuss how this nondeterminism is resolved

using F
★
’s higher-order unifier and annotation-driven subtyping algorithm.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

We adopt some notational conventions. We use 𝐶𝑡
to project the return type from a 𝐶 . We hide

the context Δ from the lookup notations when it is clear from the context. 𝐶 is the underlying

representation of 𝐶 , defined as 𝑡 when 𝐶 = Tot 𝑡 and 𝐹 .repr 𝑡 𝑒 when 𝐶 = 𝐹 𝑡 𝑒 . We also elide the

type 𝑡 from 𝜆𝑥 :𝑡 . 𝑒 when it is clear from the context. 𝐶.bind looks up the bind combinator for the

effect of 𝐶 (for 𝐶 = Tot _, bind desugars to function application). Finally, we write lift𝐶2

𝐶1

to mean

the lift combinator lift𝑀2

𝑀1

in 𝑆 , where𝑀𝑖 is the effect of 𝐶𝑖 .

Rule T-Var is the standard variable typing rule, elaborated as is to TotalF
★
. Rule T-Let is the

let-binding rule. Whereas EMF* had explicit monadic binds and lifts in the syntax, in IMF
★
, monadic

elaboration is type-directed and more accurately describes F
★
’s implementation. The rule first

typechecks 𝑒1:𝐶1 and 𝑒2:𝐶2. Since 𝐶1 and 𝐶2 could have different effects, the rule lifts them to a

common computation type 𝐶 , and binds the resulting 𝐶 computations. The rule is reminiscent

of Swamy et al.’s (2011) and Hicks et al.’s (2014) monadic elaboration rules, though both their calculi

are non-dependent. Concretely, the rule introduces two fresh variables 𝑓 : 𝐶1 and 𝑔 : 𝑥 :𝐶𝑡
1
→ 𝐶2,

applies the lift combinators to 𝑓 and 𝑔, and then applies the resulting computations to 𝐶.bind. The
let-binding is assigned the computation type 𝐶 and the compiled TotalF

★
term is 𝑒 ′ with 𝑒 ′

1
and 𝑒 ′

2

substituted for 𝑓 and 𝑔.

T-Reify and T-Reflect move back-and-forth between a computation type and its representation.

Interestingly, the elaboration of reify 𝑒 (resp.M.reflect 𝑒) is just the elaboration of 𝑒 ; reify and reflect
are just identity coercions in IMF

★
with no counterpart necessary in TotalF

★
. In contrast, Filinski

[1999] uses monadic reflection to structure the compilation of monadic computations using state

and continuations—we leave exploring this possibility to the future, which may allow for more

efficient compilation of user-defined effects.

We now return to the GST increment example from Section 1 and show the typing rules at work.

To elaborate let x = read () in write x+1, the rule T-Let first typechecks read ():GST state R and

elaborates it to (𝜆s → s,s)5 (the elaboration uses the rules for application and lambda forms which

we present in the supplementary material; the rules are straightforward and descend into their

subterms as expected). Note that the definition of read uses reflect, which is an identity in TotalF
★
.

Next, the rule typechecks 𝜆x → write x+1:state→ GST unit RW and elaborates it to (𝜆x _→ (), x+1).

Since the two effect labels are the same, and GST.bind is already a TotalF
★
term, the final elaborated

term is GST.bind (𝜆s → s,s) (𝜆x _ → (), x+1).

Rule T-Case is similar to T-Let. It first typechecks the scrutinee 𝑒 and the two branches 𝑒1 and

𝑒2 under appropriate assumptions. The rule then lifts the two branches to 𝐶 by applying the lift

combinators to fresh variables 𝑓1 and 𝑓2, and constructs the final TotalF
★
term with appropriate

substitutions, as in T-Let.

The rule T-Sub applies subtyping on computations. Rule C-M typechecks a computation type

𝐶 by typechecking 𝐶 . The computation-type subtyping rule SC-M delegates to subtyping on the

underlying representations, with any preconditions arising as proof obligations expressed within

TotalF
★
’s ⊨ entailment relation (dispatched in practice to SMT or to user tactics). Since the rule

does not automatically lift 𝐶 , it does not need to be coercive. Similarly, rule S-Sub lifts TotalF
★
’s

subtyping rule for use with IMF
★
’s value types.

Our main theorem states that the IMF
★
translation to TotalF

★
is type-preserving.

Theorem 3.1. If 𝑆 ; Γ ⊢ 𝑒 : 𝐶 ⇝ 𝑒 ′, then 𝑆 ; Γ ⊢ 𝐶 : Type⇝ 𝑡 ′ and [| Γ |]𝑆 ⊢ 𝑒 ′ : 𝑡 ′.

Here, [| Γ |]𝑆 is the pointwise translation of the typing environment, and [| Γ |]𝑆 ⊢ 𝑒 ′ : 𝑡 ′ is the
typing judgment in TotalF

★
. Using the theorem, a typing derivation in IMF

★
can be soundly inter-

preted in TotalF
★
. Ahman et al. [2017] prove EMF* normalizing, type-preserving, and a consistency

5
The elaborated term is actually (𝜆() s → s,s) (), we eliminate the application for clarity.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

15

property for its refinement logic—these results also apply to its TotalF
★
fragment. The proof of the

theorem is by mutual induction on the typing derivation with the following lemmas:

Lemma 3.2 (Commutation of Subtyping).

(a) If 𝑆 ; Γ ⊢ 𝑡 <: 𝑡1 and 𝑆 ; Γ ⊢ 𝑡 : Type⇝ 𝑡 ′ then 𝑆 ; Γ ⊢ 𝑡1 : Type⇝ 𝑡 ′
1
and [| Γ |]𝑆 ⊢ 𝑡 ′ <: 𝑡 ′

1
.

(b) If 𝑆 ; Γ ⊢ 𝐶 <: 𝐶1 and 𝑆 ; Γ ⊢ 𝐶 : Type⇝ 𝑡 ′ then 𝑆 ; Γ ⊢ 𝐶1 : Type⇝ 𝑡 ′
1
and [| Γ |]𝑆 ⊢ 𝑡 ′ <: 𝑡 ′

1
.

The essence of effect abstraction: Admissibility of using 𝐹 .subcomp for subtyping. The reader

may have noticed that the rule SC-M breaks the effect abstraction by peeking into the effect

representation for checking subtyping. However, this is not necessary: we show the admissibility

of checking subtyping using the 𝐹 .subcomp effect combinator.

The 𝐹 .subcomp combinator is typechecked, once-and-for-all as part of the effect definition, as

follows:

𝑆 ; · ⊢ 𝐹 .subcomp : 𝑎 : Type → 𝑥 : 𝑡 → 𝑓 : 𝐹 .repr 𝑎 𝑒{𝑡1} → 𝐹 .repr 𝑎 𝑒1

and

𝐹 .subcomp = 𝜆 𝑎 𝑥 𝑓 . 𝑓

where 𝑡1 is a refinement formula. The intuition is that the combinator is a coercion that can be

used to coerce a computation from 𝐹 𝑡 𝑒 to 𝐹 𝑡 𝑒1, provided that the refinement formula is valid.

The implementation of 𝐹 .subcomp is required to be an identity function. This is because subtyping

in F
★
is intentionally non-coercive, so that the application of subtyping does not disturb equality.

To prove 𝐹 𝑡 𝑒 <: 𝐹 𝑡 𝑒1, we check that:

𝑆 ; Γ, 𝑓 : 𝐹 .repr 𝑡 𝑒 ⊢ 𝐹 .subcomp 𝑓 : 𝐹 .repr 𝑡 𝑒1

Behind the scenes, this typechecking judgment proves the refinement formula in the type of the

𝐹 .subcomp combinator. The following lemma establishes the soundness of 𝐹 .subcomp:

Lemma 3.3 (Soundness of 𝑒𝑠𝑢𝑏𝑐𝑜𝑚𝑝). If Δ ⊢ 𝐹 𝑡 𝑒 : Type, Δ ⊢ 𝐹 𝑡 𝑒1 : Type, and Δ, 𝑓 : 𝐹 .repr 𝑡 𝑒 ⊢
𝐹 .subcomp 𝑓 : 𝐹 .repr 𝑡 𝑒1, then Δ ⊢ 𝐹 𝑡 𝑒 <: 𝐹 𝑡 𝑒1.

The proof of the lemma unfolds 𝐹 .subcomp to prove the subtyping of the representations, after

which an application of SC-M gives us the conclusion. Since it is admissible, we preserve the effect

abstractions and use the 𝐹 .subcomp combinator to check subsumption, rather than implementing

SC-M as is. Additionally, this means that when implementing type conversion in IMF
★
, we do not

need to translate types all the way down to TotalF
★
—Lemma 3.3 assures us that such a translation

would always succeed.

3.4 Encoding PURE, F★’s primitive Dijkstra monad
Prior to indexed effects, effectful computation types in F

★
had a fixed shape𝑀 𝑎𝑤 , where𝑤 is an𝑀-

specificweakest precondition predicate transformer [Swamy et al. 2016]. Themost primitive Dijkstra

monad in F
★
is for conditionally pure computations, written as PURE (a:Type) (w:wp a), where wp a is

the type of a monotonic predicate transformer, transforming an a-predicate into a precondition.

let wp a = w:((a → prop)→ prop) { ∀p1 p2. (∀ x. p1 x =⇒ p2 x) =⇒ (w p1 =⇒ w p2) }

Rather than taking it as primitive, PURE can be defined as an indexed effect whose representation

is pure a w, a form of continuation monad where the p:(a → prop) is a “logical continuation” in prop.

let pure a w = p:(a→ prop) → squash (w p) → v:a{p v}

let return (x:a) : pure a (𝜆 p → p x) = 𝜆_ _ → x

let bind (f:pure a w1) (g:(x:a → pure b (w2 x))) : pure b (𝜆 p → w1 (𝜆 x → w2 x p)) =

𝜆p _→ let x = f (𝜆 x → w2 x p) () in g x p () (∗ run f with a chosen postcondition, then run g with p ∗)
let subcomp (w1 w2:wp a) (_:squash (∀ p. w2 p =⇒ w1 p)) (f:pure a w1) : pure a w2 = f

let if_then_else (w1 w2:wp a) (f:pure a w1) (g:pure a w2) (b:bool) = pure a (if b then w1 else w2)

effect { PURE (a:Type) (w:wp a) with { repr = pure; return; bind; subcomp; if_then_else }}

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

PURE a w is the type of a pure computation whose result satisfies p, provided w p holds.

3.5 Implementation of indexed effects
We have implemented indexed effects in the F

★
typechecker and all the examples presented in the

paper are supported by our implementation. Below we discuss some implementation aspects.

Coherence of lifts and effect upper bounds. When adding a lift𝑀1

𝑀
to the signature, our

implementation computes all the new lift edges that it induces via transitive closure. For

example, if lift𝑀
𝑀2

and lift𝑀3

𝑀1

already exist, this new lift induces a lift𝑀3

𝑀2

via composition.

For all such new edges, if the effects involved already have an edge between them, F
★

ignores the new edge and emits a warning. Further, F
★
also ensures that for all effects

𝑀 and𝑀1, either they cannot be composed or they have a unique least upper bound.

This ensures that the final effect 𝑀 is unique in the rules T-Let and T-Case. Finally, F
★
ensures

that there are no cycles in the effects ordering.

Algorithmic subtyping. F★ implements a kind of bidirectional type inference algorithm, combined

with constraint-based higher-order unification. By propagating programmer-provided annotations

through a typing derivation, subtyping is applied only when there is an expected type from the

context. Our implementation piggybacks on this infrastructure, relating computation types with

the subcomp combinators whenever needed.

Effect combinator for composing branches of a conditional. While in IMF
★
we have formalized a

dependent pattern matching case, our implementation allows for specifying an optional custom

effect combinator for combining branches. The shape of the combinator is as follows:

𝑆 ; · ⊢ 𝐹 .if_then_else : 𝑎:Type → 𝑥 :𝑡 → 𝑓 :𝐹 .repr 𝑎 𝑒𝑡ℎ𝑒𝑛 → 𝑔:𝐹 .repr 𝑎 𝑒𝑒𝑙𝑠𝑒 → 𝑏:𝑏𝑜𝑜𝑙 → Type
and

𝐹 .if_then_else = 𝜆 𝑎 𝑥 𝑓 𝑔 𝑏. 𝐹 .repr 𝑎 𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑

F
★
ensures the soundness of the combinator by checking that under the assumption 𝑏, the type

of 𝑓 is a subtype (as per 𝐹 .subcomp) of the composed type, similarly for 𝑔 under the corresponding

assumption 𝑛𝑜𝑡 𝑏. When the combinator is omitted, F
★
chooses a default one that forces the

computation type indices for the branches to be provably equal.

Inferring effect indices using higher-order unification. Our implementation relies on the higher-

order unifier of F
★
to infer effect indices and arguments of the effect combinators. For example,

suppose we have a computation type 𝐹 𝑡1 𝑒1 and we want to apply the lift𝐹 ′

𝐹 combinator, where

lift𝐹 ′

𝐹 = 𝑒 such that:

𝑆 ; · ⊢ 𝑒 : 𝑎 : Type → 𝑥 : 𝑡 → 𝐹 .repr 𝑎 𝑒𝑓 → 𝐹 ′.repr 𝑎 𝑒
To apply this combinator, we create fresh unification variables for the binders 𝑎 and 𝑥 , and

substitute them with the unification variables in 𝐹 .repr 𝑎 𝑒𝑓 and 𝐹 ′.repr 𝑎 𝑒 , without unfolding

the 𝑒𝑟𝑒𝑝𝑟 . We then unify 𝑡1 with the unification variable for 𝑎, 𝑒1 with substituted 𝑒𝑓 , and return

(substituted) 𝐹 ′ 𝑎 𝑒 as the lifted computation type. This allow us to compute instantiations of the

combinators without reifying 𝐹 𝑡1 𝑒1 or reflecting the result type of lift. We follow this recipe for all

the effect combinators.

In our GST state increment example, to bind the two computation types GST int R (for read) and

GST unit RW (for write), using the bind combinator:

let bind a b t0 t1 (f:gst a t0) (g: a → gst b t1) : gst b (t0 ⊕ t1) = ...

we create fresh unification variables ?u𝑎 , ?u𝑏 , ?u𝑡0
, ?u𝑡1

for the a, b, t0, t1 arguments. We then

unify the indices of the f argument, i.e. ?u𝑎 and ?u𝑡0
, with the indices of the first computation

type int and R. Similarly, for the g argument, ?u𝑏 and ?u𝑡1
are unified with unit and RW. Finally,

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

17

the returned computation type is GST ?u𝑏 (?u𝑡0
⊕ ?u𝑡1

), which after solving for unification variables

becomes GST unit RW.

Support for divergence. Our implementation also supports the existing Div effect in F
★
for clas-

sifying divergent computations. To ensure consistency, the logical core of F
★
is restricted to the

pure fragment, separated from Div using the effect system. When defining indexed effects, the

representation types may encapsulate Div computations. An indexed effect 𝐹 may optionally be

marked divergent. When so, the semantic termination checker of F
★
is disabled for 𝐹 computa-

tions. However, reification of such effects results in a Div computation to capture the fact that this

computation may diverge.

4 DIJKSTRA MONADS AND ALGEBRAIC EFFECTS
Maillard et al. [2019] present Dijkstra monads as a monad-like structure M indexed by a separate

monad of specifications W, forming types of the shape M a w, where w : W a. In this section, we present

a refined instance of such a construction, a graded Dijkstra monad, integrated within a library of

algebraic effects and handlers.

Algebraic effects and handlers are a framework for modeling effects in an extensible, composable,

re-interpretable manner, with strong semantic foundations [Plotkin and Power 2003] and several

new languages and libraries emerging to support them [Bauer and Pretnar 2015; Brady 2013; Leijen

2017; Lindley et al. 2017; Plotkin and Pretnar 2009]. We show that algebraic effects and handlers can

be encoded generically using dependent types in F
★
, and exposed to programmers as an indexed

effect supporting programming in an abstract, high-level style. Further, we show that operation

labels can be conveniently tracked as an index, much like in existing effect systems for algebraic

effects. Also, we reconcile them with WPs for the particular case of state, proving that functional

specifications can be strengthened from the intensional information of its operations, employing a

unique combination of graded and Dijkstra monads.

4.1 A graded monad for algebraic effects
Our starting point is a canonical free monad representation tree0 a of computations with generic

actions producing a-typed results. We include stateful operations (Read and Write) and exceptions

(Raise), but other operations can be easily added.
6

type op = | Read | Write | Raise

let op_inp o = match o with | Read → unit | Write→ state | Raise → exn

let op_out o = match o with | Read → state | Write→ unit | Raise → empty

type tree0 (a : Type) = | Return : a→ tree0 a

| Op : op:op→ i:(op_inp op)→ k:(op_out op → tree0 a) → tree0 a

The type tree0 contains all possible combinations of the operations. To limit the operations that

may appear in a computation, our representation type tree is indexed by a set of operations that

over-approximates the operations in the computation. Specifically, a computation abides by a set

of labels labs if its operations are a subset of labs. We use a list for the index, but only interpret it

via membership, so order and multiplicity are irrelevant. This makes tree a graded monad, where

the monoid operation is the set union.

let ops = list op let tree (a:Type) (labs:ops) = c:(tree0 a){abides labs c}

𝑤ℎ𝑒𝑟𝑒 let rec abides (labs:ops) (c : tree0 a) : prop = match c with

| Return _→⊤| Op a i k→ a ∈ labs ∧ (∀ o. abides labs (k o))

6
Our implementation in the supplementary material contains an additional uninterpreted Other : int→ op, and never

relies on knowing the full set of operations.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

Packaging the refined free monad as an effect. Elevating tree to an indexed effect is straightforward,
only requiring to define the basic combinators, with most of the heavy lifting done by F

★
’s SMT

backend. We also provide a subsumption rule to grow the labels where needed, and also reorder

and deduplicate them, since they are essentially sets.

let return a (x:a) : tree a [] = Return x

let bind a b labs1 labs2 (c : tree a labs1) (f : a → tree b labs2) : tree b (labs1 ∪ labs2) = (∗ elided ∗)
let subcomp a labs1 labs2 (_:squash (labs1 ⊆ labs2)) (f : tree a labs1) : tree a labs2 = f

let cond (a:Type) (labs1 labs2 : ops) (f:tree a labs1) (g:tree a labs2) (p: bool) = tree a (labs1 ∪ labs2)

effect { Alg (a:Type) (labs:ops) with { repr = tree; return; bind; subcomp; if_then_else = cond }}

4.2 Operations and their handlers, with reflect and reify

To add operations to our new effect Alg, the reflect operator is useful, as seen in the generic action

geneff below, which uses reflect to promote a tree to an Alg. Specific instances of operations can

be defined easily using geneff, where for raise we take an extra step of matching on its (empty)

result to make it polymorphic.

let geneff (o : op) (i : op_inp o) : Alg (op_out o) [o] = Alg.reflect (Op o i Return)

let get () : Alg state [Read] = geneff Read () let put (s:state) : Alg unit [Write] = geneff Write s

let raise (e:exn) : Alg 𝛼 [Raise] = match geneff Raise e with (∗ empty match ∗)

With this, we can already write simple programs in direct style, while the system infers refined

types and elaborates programs to their tree representation.

exception Failure of string

let add_st x : Alg int [Read; Raise] = let s = get () in if s < 0 then raise (Failure "error") else x+s

When defining effect handlers, one needs access to the tree representation. For instance, the

handle_tree combinator allows all the labs0 operations in c to be handled by h, which in turn may

leave the labs1 operations to be handled, with v the continuation of c’s return.

let handler_tree_op o b labs = op_inp o→ (op_out o → tree b labs)→ tree b labs

let handler_tree labs0 b labs1 = o:op{o ∈ labs0}→ handler_tree_op o b labs1

let rec handle_tree (c : tree a labs0) (v : a → tree b labs1) (h : handler_tree labs0 b labs1)

: tree b labs1 = match c with | Return x → v x

| Op act i k → h act i (𝜆 o → handle_tree (k o) v h)

However, rather than calling handle_tree directly, which would require client code to work with

tree, we provide the following interface instead, using reify in negative positions to coerce Alg to

tree and reflect to move back.

let handler labs0 b labs1 = o:op{o ∈ labs0}→ op_inp o→ (op_out o → Alg b labs1) → Alg b labs1

let handle_with (f : unit → Alg a labs0) (v : a → Alg b labs1) (h : handler labs0 b labs1) : Alg b labs1

= (∗ elided, essentially a wrapper of handle_tree, translating h into a handler_tree, etc. ∗)

This allows us to write handlers in a direct, applicative notation, close to what is offered by

languages specifically designed for algebraic effects.

let defh : handler labs b labs = 𝜆o i k → k (geneff o i) (∗ essentially rebuilding an Op node ∗)
let catchE (f : unit → Alg a (Raise::labs)) : Alg (option a) labs =

handle_with f Some (function Raise→ (𝜆 i k→ None) | _ → defh)

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

19

4.3 AlgWP: A graded Dijkstra monad for stateful Alg programs
While Alg above bounds the operations each computation may invoke, there is no way to specify

their order, or any property about the final value and state. To do so, we can bring back the idea of

using a WP calculus to the algebraic setting by adding a new index to the effect. We limit ourselves

to stateful operations and use WPs to specify the behavior according to the state monad: without

fixing an interpretation, it is unclear what can be verified, unless equations are added.

Our new effect will refine tree with a stateful WP. We can define a function that takes a

computation tree and computes a “default” stateful WP from it. Then, we take the representation

treewp a l wp to be computation trees with operations in l whose default WP is pointwise weaker

than its annotated WP (allowing underspecification). This construction is due to Maillard et al.

[2019] but our setting is more general due to the additional grading, not supported in Dijkstra

monads. We begin by defining a predicate transformer monad for stateful programs—st_wp a is the

type of functions transforming postconditions on results and states to preconditions on states.

type post_t (a:Type) = a → state→ prop

type st_wp (a:Type) = state→ post_t a → prop

let read_wp : st_wp state = 𝜆s0 p → p s0 s0

let write_wp : state → st_wp unit = 𝜆s _ p → p () s

let return_wp (x:a) : st_wp a = 𝜆s0 p → p x s0

let bind_wp (w1 : st_wp a) (w2 : a → st_wp b) : st_wp b = 𝜆s0 p→ w1 s0 (𝜆 y s1 → w2 y s1 p)

Next, we interpret Read-Write trees into st_wp via interp_as_wp. We refine the tree type by both

limiting its operations and adding a refinement comparing itsWP via (≼), the strengthening relation
on stateful WPs, and defining return, bind, subcomp, cond, get and put for treewp, and promote it to

the AlgWP effect. AlgWP is proven sound by interpreting it into the PURE effect from §3.4.

let rec interp_as_wp #a (t : tree a [Read; Write]) : st_wp a = match t with

| Return x→ return_wp x

| Op Read _ k→ bind_wp read_wp (𝜆 s → interp_as_wp (k s))

| Op Write s k→ bind_wp (write_wp s) (𝜆 ()→ interp_as_wp (k ()))

type rwops = l:ops{l ⊆ [Read; Write]}

let treewp (a : Type) (l:rwops) (w: st_wp a) = t:(tree a l){ w ≼ interp_as_wp t }

effect { AlgWP (a:Type) (l:rwops) (w:st_wp a) with { repr = treewp; ...}}

let soundness (t : unit→ AlgWP a l wp) : s0:state → PURE (a & state) (wp s0) = ...

Using this graded Dijkstra monad, we can verify functional correctness properties, which a

graded monad alone cannot capture. For instance, when the state is instantiated to a heap (mapping

locations to values), we can prove that the program below correctly swaps two references, where

AlgPP is simply a pre-/postcondition alias to AlgWP.

effect AlgPP a l p q = AlgWP a l (𝜆 s0 post→ p s0 ∧ (∀ x s1. q x s1 =⇒ post x s1))

let swap (l1 l2 : loc) : AlgPP unit [Write; Read] (requires 𝜆_ → l1 ≠l2)

(ensures 𝜆h0 _ h1 → h0\{l1;l2} == h1\{l1;l2} ∧ h1.[l1] == h0.[l2] ∧ h1.[l2] == h0.[l1])

= let r = !l2 in l2 := !l1; l1 := r

More interestingly, the static information in the label index can be exploited by the WP. The

quotient function below strengthens the postcondition of a write-free AlgWP program into addi-

tionally ensuring that the state does not change. Operationally, quotient just runs f (), so it can be

seen as a proof that f does not change the state.

val quotient (f : unit→ AlgPP a [Read] p q) : AlgPP a [Read] p (𝜆 h0 x h1 → q h0 x h1 ∧ h0 = h1)

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

In summary, this case study has shown that we can develop dependently typed libraries for

sophisticated effect disciplines, provide reasoning principles for them in the form of novel, hybrid

indexed monads, and package it up as an effect that enables programs and their proofs to developed

at a palatable, high-level of abstraction.

5 LAYERED INDEXED EFFECTS FOR MESSAGE FORMATTING IN TLS
Indexed effects are not just for defining new effect typing disciplines—effect layers stacked upon

existing effects can make client programs and proofs more abstract, without any additional runtime

overhead.We demonstrate this at work by stacking two effect layers over EverParse [Ramananandro

et al. 2019], an existing library in F
★
for verified low-level binary message parsing and formatting,

simplifying different aspects of the programs and proofs in each layer.

Background: EverParse and Low★. EverParse is a parser generator for low-level binary message

formats, built upon a verified library of monadic parsing and formatting combinators. It produces

parsers and formatters verified for memory-safety (no buffer overruns, etc.) and functional correct-

ness (the parser is an inverse of the formatter). EverParse is programmed in Low
★
, a DSL in F

★

for C-like programming [Protzenko et al. 2017]. Low
★
’s central construct is the Stack effect which

models programming with mutable locations on the stack and heap, with explicit memory layout

and lifetimes. Stack is a Hoare monad with the following signature:

effect Stack (a:Type) (pre:mem→ prop) (post:mem→ a → mem→ prop)

Programs in Stack may only allocate on the stack, while reading and writing both the stack and

the heap, with pre- and postconditions referring to mem, a region-based memory encapsulating both

stack and heap. Low
★
provides fine-grained control for general-purpose low-level programming,

at the expense of low-level proof obligations related to spatial and temporal memory safety, and

framing–we aim to simplify these proofs for binary message formatters with domain-specific

abstractions built using indexed effects.

The problem: Existing code mired in low-level details. Consider, for instance, formatting a struct of

two 32-bit integer fields into a mutable array of bytes, a buffer U8.t in Low
★
parlance.

type example = { left: U32.t; right: U32.t }

EverParse generates a lemma stating that if the output buffer contains two binary representations

of integers back to back, then it contains a valid binary representation of an example:

val example_intro mem (output: buffer U8.t) (offset_from: U32.t) : Lemma

(requires valid_from parse_u32 mem output offset_from ∧
valid_from parse_u32 mem output (offset_to parse_u32 mem output offset_from))

(ensures valid_from parse_example mem output offset_from)

To format a value of this type, one must write code like this:

let write_example (output: buffer U8.t) (len: U32.t) (x y: U32.t) : Stack bool

(requires 𝜆m0 → live m0 output ∧ len == length output) (* memory safety *)
(ensures 𝜆m0 success m1 → modifies output m0 m1 ∧ (* memory safety & framing *)
(success =⇒ valid_from parse_example m1 output 0)) (* output correctness wrt parser *)

= if len < 8 then false (∗ output buffer too small ∗)
else let off = write_u32 output 0 x in let _ = write_u32 output off y in

let mem = get () in example_intro mem output 0; true

The user needs to reason about the concrete byte offsets: they need to provide the positions

where values should be written, relying on write_u32 returning the position just past the 32-bit

integer it wrote in memory. Then, they have to apply the validity lemma: satisfying its precondition

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

21

involves (crucially) proving that the writing of the second field write does not overlap the first one,

through Low
★
memory framing. These proofs are here implicit but still incur verification cost to

the SMT solver; as the complexity of the structs increases, it has a significant impact on the SMT

proof automation. Moreover, the user also needs to worry about the size of the output buffer being

large enough to store the two integer fields.

We describe next how using indexed effects we can reduce the programming and proving

overhead to:

let write_example (x y : U32.t) : FWrite unit parse_empty parse_example = write_u32 x; write_u32 y

5.1 The Write effect
We define a Write effect, layered over Stack, to abstract the low-level byte layout, memory safety, and

error handling–we will address framing later. An effectful computation f : Write a pbefore pafter

returns a value of type a while working on a hidden underlying mutable buffer. Each such computa-

tion requires upon being called that the buffer contains binary data valid according to the pbefore

parser specification, and ensures that, if successful, it contains binary data valid according to pafter

on completion. Thus, Write is a simple parser-indexed parameterized state and error monad, that

hides the mundane memory safety, binary layout, and error propagation details from its clients.

Returning to example, we can define:

(∗ A leaf writer for writing an integer ∗)
val write_u32 : U32.t → Write unit parse_empty parse_u32

(∗ A generic higher−order framing operator, to be able to write two pieces of data in a row ∗)
val frame (#a: Type) (#pframe #pafter : parser) (f: unit→ Write a parse_empty pafter)

: Write a pframe (parse_pair pframe pafter)

(∗ A lifting of the example_intro_mem lemma, with all binary layout details hidden, computationally a no−op. ∗)
val write_example_correct : unit → Write unit (parse_pair parse_u32 parse_u32) parse_example

This last lemma states that, if the output buffer contains valid data for parsing a pair of two integers,

then calling this function will turn that data into valid data for parsing an example struct value. With

these components, the user can now write their formatting code more succinctly, as shown below.

The output buffer, offsets, and error propagation are hidden in the effect and so, the user no longer

needs to explicitly reason about them. Furthermore, the code becomes much more self-explanatory.

let write_example (x y : U32.t) : Write unit parse_empty parse_example =

write_u32 x; frame (𝜆 _ → write_u32 y); write_example_correct ()

Defining Write: A peek beneath the covers. We represent Write using a dependent pair of indexed

monads (p.datatype is the type of the values parsed by p):

type repr (a : Type) pbefore pafter = (spec : repr_spec t pbefore.datatype pafter.datatype

& repr_impl t pbefore pafter spec)

The first field, spec, is a specificational parameterized monad evolving an abstract state from

pbefore.datatype to pafter.datatype. The second field is the Low
★
implementation, indexed by a

pair of parsers and the spec. As such, repr_impl is a parameterized-monad-indexed monad, or a

form of parameterized Dijkstra monad, a novel construction, as far as we are aware.

Compiling Write computations to C. To compile a Write computation to C, or call it from other

Low
★
code, we simply reify it and project its Low

★
implementation:

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

let reify_spec (f: unit→ Write a pbefore pafter)

: repr_spec a pbefore.datatype pafter.datatype = fst (reify (f ()))

(∗ Extract the Low∗ code of a computation to compile it to C ∗)
let reify_impl (f: unit→ Write a pbefore pafter)

: repr_impl a pbefore pafter (reify_spec f)) = snd (reify (f ()))

Using effect subcomp for automatic parser rewriting. We can embed parser rewriting rules in the

subcomp combinator for Write, as follows:

val subcomp a (p1 : parser) (p2 p2' : parser{valid_rewrite p2 p2'}) (_ : repr a p1 p2) : repr a p1 p2'

where valid_rewrite p2 p2' is a relation on parser specifications stating that any binary data valid

for p2 is also valid for p2'. Since the valid_rewrite goals can automatically be solved via SMT,

this allows us to rewrite example as simply: (write_u32 x; frame (𝜆_ → write_u32 y)). The remaining

overhead is framing; we eliminate it with another indexed effect layered on top of Write.

5.2 Automated framing with FWrite

Following the frame inference methodology proposed by Fromherz et al. [2021] in the context of a

concurrent separation logic, we define a new effect FWrite that automatically adds frames to the

computations when sequentially composing them.

type frepr (a:Type) pbefore pafter = unit → Write a pbefore pafter

val fbind (a b: Type) (p1 p1' p2 p2': parser)

(frame_f: parser) (frame_g: parser)

(_ : squash (valid_rewrite (parse_pair frame_f p2) (parse_pair frame_g p1')))

(f: frepr a p1 p2) (g: a → frepr b p1' p2')

: frepr b (parse_pair frame_f p1) (parse_pair frame_g p2')

effect { FWrite (t: Type) (pbefore pafter: parser) with { repr = frepr; bind = fbind; ... } }

The fbind combinator inserts frames frame_f and frame_g to the two computations f and g, and

adds a squashed goal to the VC ensuring that the framed postcondition of f, parse_pair frame_f p2,

can be rewritten into the framed precondition of g, parse_pair frame_g p1'. Under the hood, FWrite

computations are thunked Write computations; implementing fbind thus consists of composing

calls to f and g encapsulated by the frame combinator of the Write effect.

To automatically infer frame_f and frame_g, and discharge the framing related VCs, similar

to Fromherz et al. [2021], we gather all the framing goals and implicits and discharge them using a

(partial) decision procedure that we implement as an F
★
tactic.

With FWrite, we can now write example in, arguably, the most natural way:

let write_example (x y : U32.t) : FWrite unit parse_empty parse_example = write_u32 x; write_u32 y

By successively layering several effects, we thus retrieve a proof style akin to proofs by refinement,

but for effectful computations. We abstract away reasoning about error handling, low-level byte

layout, and framing, through different indexed effects, finally providing a programmer with a

high-level interface closer to an idealized functional program to use verified low-level serializers.

The FWrite effect scales to more than just writing a record of two integers. We show how to

write a variable-sized list of 32-bit integers, the list being prefixed by a header recording its size in

bytes. If p is a parser for the elements of the list, then parse_vllist p min max is a parser that first

reads a header consisting of an integer value that will be the total storage size of the list elements

in bytes, then checks that it is between min and max, then parses the list of elements using p for

each header. The min and max bounds are constants mandated by the data format and independent

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

23

of the size of the actual output buffer. The following code writes a list of two integers, following

the data format specified by parse_vllist:

let write_int_list (max_list_size: U32.t)

: FWrite unit parse_empty (parse_vllist parse_u32 0 max_list_size) =

write_vllist_nil parse_u32 max_list_size;

write_u32 18ul; extend_vllist_snoc ();

write_u32 42ul; extend_vllist_snoc ()

The value of max_list_size constrains the size of the size header, but thanks to the abstraction

provided by Write (and hence FWrite), the user does not need to know about that actual size. The

code relies on two combinators:

val write_vllist_nil (p: parser) (max: U32.t) : FWrite unit parse_empty (parse_vllist p 0 max)

val extend_vllist_snoc (#p: parser) (#min #max: U32.t) ()

: FWrite unit (parse_pair (parse_vllist p min max) p) (parse_vllist p min max)

write_vllist_nil starts writing an empty list by writing 0 as its size header. extend_vllist_snoc

assumes that the output buffer contains some variable-sized list immediately followed by an

additional element and “appends” the element into the list by just updating the size header of the

list; thus, the new element is not copied into the list, since it is already there at the right place.

extend_vllist_snoc also dynamically checks whether the size of the resulting list is still within the

bounds expected by the parser, returning an error if not.

The data format specified by parse_vllist p min max and implemented by those FWrite combina-

tors corresponds to the format of variable-sized lists prefixed by their byte size as mandated by the

TLS 1.3 RFC [Rescorla 2018].

5.3 Application: TLS 1.3 handshake extensions
We have used the Write effect to generate the list of extensions of a TLS 1.3 [Rescorla 2018]

ClientHello handshake message, that a client sends to a server to specify which cipher suites and

other protocol extensions it supports. This is the most complex part of the handshake message

format, involving much more than just pairs: it involves variable-sized data and lists prefixed by

their size in bytes (as in the write_int_list example above), as well as tagged unions where the

parser of the payload depends on the value of the tag. Our Write effect based implementation of

ClientHello messages compiles to C and executes; we are currently rewriting it with FWrite to take

advantage of automated framing, and integrating it into a low-level rewriting of an implementation

of TLS in F
★
[Bhargavan et al. 2013].

A more powerful version of the Write and FWrite effects with support for Hoare-style pre- and

postconditions to prove functional correctness properties on the actual values written to the output

buffer, as well as error postconditions, in addition to correctness with respect to the data format, is

underway. With such an enhanced version, we plan to leverage pre- and postconditions to avoid

dynamic checks on writing variable-size list items.

6 EXISTING APPLICATIONS OF INDEXED EFFECTS
Indexed effects have been available in recent releases of F

★
and have been used in Steel [Fromherz

et al. 2021] and DY
★
[Bhargavan et al. 2021], two independent developments. These uses validate

our design and support our claim that indexed effects help structure effectful programs and proofs

at scale. We briefly summarize their work, while refering the reader to the Steel and DY
★
papers

for more details.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

6.1 Steel
Steel is a language for developing and proving concurrent, dependently-typed F

★
programs. Steel’s

program logic is based on a shallow embedding of concurrent separation logic in F
★
, while also

enabling Hoare-style reasoning using a variant of heap predicates, called selector predicates.
To enable smooth interoperation between separation logic and Hoare logic, Steel encodes pre-

and postconditions as effect indices; we show a simplified version of the Steel effect representation:

let selpre fp = rheap fp → prop let selpost fp a fp' = rheap fp→ a → rheap fp'→ prop

val steel_repr (a:Type) (fp:slprop) (fp':a → slprop) (req:selpre fp) (ens:selpost fp a fp') : Type

Separation logic specifications rely on assertions of type slprop, and are encoded through a

precondition fp, and a return value dependent postcondition fp'. Similarly to the Hoare monad

from §2.3, selector specifications consist of a precondition req and a 2-state postcondition ens.

Note that req and ens operate on states (i.e., heaps) that are parameterized by the separation logic

specifications: rheap fp is a restricted heap corresponding exactly to the predicate fp. This is another

instance of a hybrid, dependent indexing structure, where the fp indices constrain the selector

predicates.

SteelGhost

SteelAtomic

Steel

To reason about concurrent programs, Steel also models atomic compu-

tations, as well as a notion of ghost state, which can be manipulated through

ghost, computationally irrelevant computations. Ghost and atomic compu-

tations are separated from generic Steel functions, and are thus modeled

as their own effects, SteelGhost and SteelAtomic, with two additional effect

indices to encode verification conditions related to atomicity. Nevertheless,

a ghost computation can always be seen as atomic, while an atomic compu-

tation is but a special case of a generic Steel computation. Steel captures this

hierarchy through lifts between its different effects, which are automatically

inserted by our framework when needed.

In Steel, indexed effects thus provide a foundation to structure reasoning, enabling, for instance,

a separation of verification conditions related to atomicity and separation logic. Leveraging this

structure, Steel automates framing reasoning, using a methodology similar in spirit to the one

presented in §5.2, albeit applied to a full-fledged, impredicative, concurrent separation logic, which

simplified the development of a wide variety of verified libraries, ranging from self-balancing trees

and concurrent queues to 2-party session types.

6.2 DY★

DY
★
is an F

★
-based framework for symbolic verification of security protocols and has been used

for the first symbolic analysis of the Signal protocol, the messaging protocol used in WhatsApp,

while accounting for an unbounded number of ratcheting rounds.

Protocols sessions in DY
★
are modeled as partial, stateful F

★
functions that may raise exceptions

and the underlying state is a global, monotonic trace that tracks the interleaved execution of

sessions. This is represented as an indexed effect for a state and exception Dijkstra monad, called

Crypto. All the security protocols in DY
★
, including Signal, are written in the Crypto effect, and

verified against the trace-based properties expressed as specifications in the Dijkstra monad.

type wp (a:Type) = (option a → trace→ prop)→ trace → prop

(∗ The monotonicity property of the trace is internalized in the repr via extends ∗)
type crypto_repr (a:Type) (w:wp a) =

s0:trace → PURE (option a & trace) (𝜆 p → w (𝜆 x s1 → s1 `extends` s0 =⇒ p (x, s1)) s0)

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

25

Without indexed effects, defining such an effect in F
★
would not be possible, and using an

axiomatized effect for verifying security properties is clearly suboptimal. Though one could derive

an effect for state and exceptions using the Dijkstra Monads for Free methodology [Ahman et al.

2017], it does not allow internalizing trace monotonicity, as they have done here.

7 RELATEDWORK & CONCLUSIONS
We have discussed several strands of related work throughout the paper. We focus here on relating

our work to two main themes not discussed in detail elsewhere.

Unifying frameworks for effectful programming and semantics. Given the variety of monad-like

frameworks for effects, a unifying theory that accounts for all the variants is a subject of some

interest. Filinski [1999] presents a framework for specifying and implementing layered monads,

focusing on implementing them uniformly with delimited continuations and state, though does

not consider indexed monads. Tate’s (2013) productors and, equivalently, Hicks et al.’s (2014)

polymonads are attempts at subsuming frameworks, Tate focusing more on the semantics while

Hicks et al. consider programmability, though neither handle dependently typed programs. Bracker

and Nilsson [2015] provide a Haskell plugin for polymonad programming—our implementation

also provides support for polymonads, where not only the indices but also the effect label can vary

among the computation arguments to bind, a feature used in Steel [Fromherz et al. 2021]. Orchard

et al. [2020] propose to unify graded and parameterized monads by moving to category-indexed

monads, studying them from a semantic perspective only, while also working in a simply typed

setting. Orchard and Petricek [2014] also propose a library to encode effect systems with graded

monads in Haskell.

Programming and proving with algebraic effects. Our library for algebraic effects is perhaps

related most closely to Brady’s (2013) Effects DSL in the dependently typed language Idris. The

main points of difference likely stem from what is considered idiomatic in Idris versus F
★
. For

instance, the core construct in the Idris DSL is a type indexed by a list of effects (similar to our

tree a l)—whereas in Idris the indexing is intrinsic, our trees are indexed extrinsically with a

refinement type, enabling a natural notion of subsumption on indices based on SMT-automated

effect inclusion. Idris’ core effects language is actually a parameterized monad—our supplement

and full version of the paper show a similarly parameterized version of our tree type. By packaging

our trees into an effect, we benefit from automatic elaboration, avoiding the need for monadic

syntax, idiom brackets and the like, with implicit subsumption handled by SMT. Further, unlike

Brady, we provide a way to interpret Read-Write trees into a Dijkstra monad, enabling functional

correctness proofs. While we have only taken initial steps in this direction, we appear to be the

first to actually verify stateful programs in this style. Maillard et al. [2019] propose a tentative

semantics to interpret algebraic effect handlers with Dijkstra monads, and use their approach to

extrinsically verify the totality of a Fibonacci program with general recursion. Our work builds on

theirs, requires fixing the interpretation of the operations, but yields a methodology to do proofs of

stateful programs. Besides, with indexed effects, we get to choose whether to work with Dijkstra

monads or not—in contrast, Maillard et al.’s framework cannot support the list-of-effects indexed

graded monad. Algebraic effects have also been embedded in Haskell in several styles, notably

by Kiselyov and Ishii’s (2015) “freer” monads, relying on encodings of dependent types in Haskell’s

type system to also index by a list of effect labels, while focusing also on efficient execution, a topic

we have not yet addressed for our Alg effect.

Conclusions. Embracing the diversity of indexed monad-like constructions, and aiming to benefit

from them when programming with effects in a dependently typed language, we have designed

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

and implemented indexed effects as a feature of F★. In doing so, we have simplified F
★
’s core logic,

while also enabling new abstractions for programming and proving. Being available in F
★
for the

past year, we have already seen indexed effects deployed by users in various settings, giving us

confidence that our work scales to large developments. By lowering the bar to programming with

indexed monads, we hope to encourage the development of new indexed constructions and new

patterns of proof for effectful software.

REFERENCES
Danel Ahman, Cédric Fournet, Cătălin Hriţcu, Kenji Maillard, Aseem Rastogi, and Nikhil Swamy. 2018. Recalling a Witness:

Foundations and Applications of Monotonic State. PACMPL 2, POPL (jan 2018), 65:1–65:30. https://arxiv.org/abs/1707.

02466

Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Martínez, Gordon Plotkin, Jonathan Protzenko, Aseem Rastogi, and

Nikhil Swamy. 2017. Dijkstra Monads for Free. In 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL). ACM, 515–529. https://doi.org/10.1145/3009837.3009878

Robert Atkey. 2009. Parameterised notions of computation. Journal of Functional Programming 19 (2009), 335–376. Issue 3-4.

https://doi.org/10.1017/S095679680900728X

Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. J. Log. Algebraic Methods Program.
84, 1 (2015), 108–123. https://doi.org/10.1016/j.jlamp.2014.02.001

Nick Benton, Andrew Kennedy, Martin Hofmann, and Lennart Beringer. 2006. Reading, Writing and Relations. In Program-
ming Languages and Systems, 4th Asian Symposium, APLAS 2006, Sydney, Australia, November 8-10, 2006, Proceedings (Lec-
ture Notes in Computer Science, Vol. 4279), Naoki Kobayashi (Ed.). Springer, 114–130. https://doi.org/10.1007/11924661_7

Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido Schmitz, and Tim

Würtele. 2021. DY*: Modular Symbolic Verification Framework for Executable Cryptographic Protocol Code. (2021).

https://publ.sec.uni-stuttgart.de/bhargavanbichavatdohosseynikuestersschmitzwuertele-eurosp-2021.pdf To appear.

Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Hawblitzel, Cătălin Hriţcu, Samin

Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay Lorch, Kenji Maillard, Jianyang Pang, Bryan Parno, Jonathan Protzenko,

Tahina Ramananandro, Ashay Rane, Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santiago Zanella-

Béguelin, and Jean-Karim Zinzindohoué. 2017. Everest: Towards a Verified, Drop-in Replacement of HTTPS. In 2nd
Summit on Advances in Programming Languages. http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-

2017-1.pdf

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and P Strub. 2013. Implementing TLS with

verified cryptographic security. In IEEE Symposium on Security and Privacy. 445–459.
Jan Bracker and Henrik Nilsson. 2015. Polymonad Programming in Haskell. In Proceedings of the 27th Symposium on the

Implementation and Application of Functional Programming Languages (Koblenz, Germany) (IFL ’15). Association for

Computing Machinery, New York, NY, USA, Article 3, 12 pages. https://doi.org/10.1145/2897336.2897340

Edwin C. Brady. 2013. Programming and reasoningwith algebraic effects and dependent types. InACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett and Tarmo

Uustalu (Eds.). ACM, 133–144. https://doi.org/10.1145/2500365.2500581

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, TACAS (Lecture Notes in Computer Science, Vol. 4963).
Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Andrzej Filinski. 1999. Representing Layered Monads. In 26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. ACM, 175–188. https://doi.org/10.1145/292540.292557

Aymeric Fromherz, Aseem Rastogi, Nikhil Swamy, Sydney Gibson, Guido Martínez, Denis Merigoux, and Tahina Ramananan-

dro. 2021. Steel: Proof-Oriented Programming in a Dependently Typed Concurrent Separation Logic. In Proceedings of
the International Conference on Functional Programming (ICFP).

Michael Hicks, Gavin M. Bierman, Nataliya Guts, Daan Leijen, and Nikhil Swamy. 2014. Polymonadic Programming. In

Proceedings 5th Workshop on Mathematically Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France, 12
April 2014 (EPTCS, Vol. 153), Paul Levy and Neel Krishnaswami (Eds.). 79–99. https://doi.org/10.4204/EPTCS.153.7

Ioannis T. Kassios. 2006. Dynamic Frames: Support for Framing, Dependencies and Sharing Without Restrictions. In

Proceedings of the 14th International Conference on Formal Methods (Hamilton, Canada) (FM’06). Springer-Verlag, Berlin,
Heidelberg, 268–283. https://doi.org/10.1007/11813040_19

Shin-ya Katsumata. 2014. Parametric effect monads and semantics of effect systems. In The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, Suresh
Jagannathan and Peter Sewell (Eds.). ACM, 633–646. https://doi.org/10.1145/2535838.2535846

https://arxiv.org/abs/1707.02466
https://arxiv.org/abs/1707.02466
https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1007/11924661_7
https://publ.sec.uni-stuttgart.de/bhargavanbichavatdohosseynikuestersschmitzwuertele-eurosp-2021.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7119/pdf/LIPIcs-SNAPL-2017-1.pdf
https://doi.org/10.1145/2897336.2897340
https://doi.org/10.1145/2500365.2500581
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/292540.292557
https://doi.org/10.4204/EPTCS.153.7
https://doi.org/10.1007/11813040_19
https://doi.org/10.1145/2535838.2535846

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

27

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. SIGPLAN Not. 50, 12 (Aug. 2015), 94–105.
https://doi.org/10.1145/2887747.2804319

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna
and Andrew D. Gordon (Eds.). ACM, 486–499. http://dl.acm.org/citation.cfm?id=3009872

Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation, Vol. 2.

Springer.

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for Computing Machinery,

New York, NY, USA, 500–514. https://doi.org/10.1145/3009837.3009897

Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra

Monads for All. Proc. ACM Program. Lang. 3, ICFP, Article 104 (July 2019), 29 pages. https://doi.org/10.1145/3341708

Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel, Cătălin Hriţcu, Monal

Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina Ramananandro, Aseem

Rastogi, and Nikhil Swamy. 2019. Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms. In 28th European
Symposium on Programming (ESOP). Springer, 30–59. https://doi.org/10.1007/978-3-030-17184-1_2

Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. IEEE Computer Society, 14–23.

https://doi.org/10.1109/LICS.1989.39155

Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. 2008. Hoare type theory, polymorphism and separation. J.
Funct. Program. 18, 5-6 (2008), 865–911. http://ynot.cs.harvard.edu/papers/jfpsep07.pdf

Dominic Orchard, Philip Wadler, and Harley Eades III. 2020. Unifying graded and parameterised monads. In Proceedings
Eighth Workshop on Mathematically Structured Functional Programming, MSFP at ETAPS 2020, Dublin, Ireland, 25th April
2020 (EPTCS, Vol. 317), Max S. New and Sam Lindley (Eds.). 18–38. https://doi.org/10.4204/EPTCS.317.2

Dominic A. Orchard and Tomas Petricek. 2014. Embedding effect systems in Haskell. In Proceedings of the 2014 ACM
SIGPLAN symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014, Wouter Swierstra (Ed.). ACM, 13–24. https:

//doi.org/10.1145/2633357.2633368

Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11, 1
(2003), 69–94. https://doi.org/10.1023/A:1023064908962

Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems, 18th
European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5502), Giuseppe
Castagna (Ed.). Springer, 80–94. https://doi.org/10.1007/978-3-642-00590-9_7

Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng Wang, Santiago Zanella-

Béguelin, Antoine Delignat-Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017.

Verified Low-Level Programming Embedded in F*. PACMPL 1, ICFP (Sept. 2017), 17:1–17:29. https://doi.org/10.1145/

3110261

Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy, Tej Chajed, Nadim Kobeissi, and Jonathan

Protzenko. 2019. EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats. In Proceedings of the
28th USENIX Conference on Security Symposium (Santa Clara, CA, USA) (USENIX Security 2019). USENIX Association,

USA, 1465–1482.

E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. IETF RFC 8446. https://tools.ietf.org/html/rfc8446

Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks. 2011. Lightweight monadic programming in ML. In Proceeding
of the 16th ACM SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21,
2011 (ICFP ’11). 15–27. https://www.cs.umd.edu/~mwh/papers/swamy11monad.html

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.

2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). ACM, 256–270. https://www.fstar-lang.org/papers/mumon/

Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido Martínez. 2020. SteelCore:

An Extensible Concurrent Separation Logic for Effectful Dependently Typed Programs. Proc. ACM Program. Lang. 4,
ICFP, Article 121 (Aug. 2020), 30 pages. https://doi.org/10.1145/3409003

Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. 2013. Verifying Higher-order Programs

with the Dijkstra Monad. In Proceedings of the 34th annual ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI ’13). 387–398. https://www.microsoft.com/en-us/research/publication/verifying-higher-order-

programs-with-the-dijkstra-monad/

https://doi.org/10.1145/2887747.2804319
http://dl.acm.org/citation.cfm?id=3009872
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3341708
https://doi.org/10.1007/978-3-030-17184-1_2
https://doi.org/10.1109/LICS.1989.39155
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf
https://doi.org/10.4204/EPTCS.317.2
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://tools.ietf.org/html/rfc8446
https://www.cs.umd.edu/~mwh/papers/swamy11monad.html
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/3409003
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/
https://www.microsoft.com/en-us/research/publication/verifying-higher-order-programs-with-the-dijkstra-monad/

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Aseem Rastogi, Guido Martínez, Aymeric Fromherz, Tahina Ramananandro, and Nikhil Swamy

Ross Tate. 2013. The Sequential Semantics of Producer Effect Systems. In Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Rome, Italy) (POPL ’13). Association for Computing

Machinery, New York, NY, USA, 15–26. https://doi.org/10.1145/2429069.2429074

Philip Wadler. 1992. The Essence of Functional Programming. In Conference Record of the Nineteenth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Albuquerque, New Mexico, USA, January 19-22, 1992, Ravi
Sethi (Ed.). ACM Press, 1–14. https://doi.org/10.1145/143165.143169

https://doi.org/10.1145/2429069.2429074
https://doi.org/10.1145/143165.143169

	Abstract
	1 Introduction
	1.1 New hybrid constructions
	1.2 Type-and-effect directed elaboration
	1.3 Formalization of indexed effects and simplification to the theory of F
	1.4 Applications of the new hybrid constructions

	2 Indexed Effects in F, By Example
	2.1 Background on F and a non-indexed effect for state
	2.2 Indexed effects, in a nutshell
	2.3 A Hoare monad for functional correctness proofs of stateful programs
	2.4 Refining `HST` with information flow control

	3 Formalization and Implementation of Indexed Effects
	3.1 TotalF: The new core calculus for F
	3.2 IMF*: A surface language with user-defined indexed effects
	3.3 Type-and-effect directed elaboration
	3.4 Encoding `PURE`, F's primitive Dijkstra monad
	3.5 Implementation of indexed effects

	4 Dijkstra Monads and Algebraic Effects
	4.1 A graded monad for algebraic effects
	4.2 Operations and their handlers, with `reflect` and `reify`
	4.3 `AlgWP`: A graded Dijkstra monad for stateful `Alg` programs

	5 Layered Indexed Effects for Message Formatting in TLS
	5.1 The `Write` effect
	5.2 Automated framing with FWrite
	5.3 Application: TLS 1.3 handshake extensions

	6 Existing Applications of Indexed Effects
	6.1 Steel
	6.2 DY

	7 Related work & Conclusions
	References

