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Abstract
We present (new) F?, a dependently typed language for writing
general-purpose programs with effects, specifying them within
its functional core, and verifying them semi-automatically, by a
combination of type inference, SMT solving, and manual proofs.

A central difficulty is to ensure the consistency of a core language
of proofs within a larger language in which programs may exhibit
effects such as state, exceptions, non-termination, IO, concurrency,
etc. Prior attempts at solving this problem generally resort to a range
of ad hoc methods. Instead, the main novelty of F? is to safely
embrace and extend the familiar style of type-and-effect systems
with fully dependent types.

F? is founded on a λ -calculus with a range of primitive effects
and a dependent type system parameterized by a user-defined lattice
of Dijkstra monads. For each monad, the user provides a predicate-
transformer that captures its effective semantics. At the bottom of
the lattice is a distinguished Pure monad, such that computations
typeable as Pure are normalizing—our termination argument is
based on well-founded relations and is fully semantic.

We illustrate our design on a series of challenging programming
examples. We outline its metatheory on a core calculus, for which
we prove soundness and termination of the Pure fragment. We also
discuss selected aspects of its fresh typechecker. The F? system is
open source; it fully supports our new design; it generates F# and
OCaml code; and it bootstraps to several platforms.

1. Introduction
F? needed an overhaul. Since its initial development in 2010
(and presentation at ICFP 2011) we have had about five years of
programming experience with it to discern the parts of the language
that work well and those that are painful.

The main distinctive feature of F? was its value-dependent
refinement type system, a middle ground between the mainstream
variants of the ML type system, and the vastly more powerful
dependent type theory underlying systems like Coq. The main
typing construct in the language is the refinement type x:t{φ}, a
type inhabited only by those elements of t that also satisfy the
predicate φ , e.g. x:int{x ≥ 0} is the type of non-negative integers.
Backed by an SMT solver for good automation, F?’s type-checker
can be used to statically check a variety of program properties.

We have used value-dependent refinement types to carry out
several non-trivial verifications. Some highlights using F? and its
predecessor F7 include: the verification of the security of many cryp-
tographic protocols, including, most substantially, miTLS (Bharga-
van et al. 2013), a verified implementation of TLS-1.2 (Dierks and
Rescorla 2008); several memory invariants of an embedded seman-
tics for JavaScript (Swamy et al. 2013b); a compiler from (a subset
of) F? to JavaScript, proved fully abstract (Fournet et al. 2013);
and even, using a technique called self-certification, a proof of the
correctness of the core verifier of F? itself (Strub et al. 2012). In-
dependently, other researchers have also explored value-dependent
refinement types, with good success (Backes et al. 2014; Eigner and
Maffei 2013; Lourenço and Caires 2015; Rondon et al. 2008; Vazou
et al. 2014).

This positive experience suggests that value dependent types
are a sweet spot in the design space of integrating dependent types
in a full-fledged programming language. However, as we aim to
move F? forwards to the certification of larger pieces of code, we
find value dependency to be lacking—as detailed below. (Looking
forward, we henceforth write F? for the new F? language and F?

v1.0 implementation, and write old F? for F? circa 2010–2014.)

Value-dependent types: why and what for? Given a program e
and purported type for it x:t{φ}, the type-checker seeks to prove that
e has type t and furthermore that φ holds for every evaluation of e,
e.g., that e returns non-negative integers.

To enable refinement predicates φ to be checked mostly automat-
ically, various restrictions are usually placed on their form. While
φ may refer to program terms (e.g., we may write x:int{x > y},
where y is some program variable in scope), allowing constructs
like x:int{failwith "fixme"; true) } is problematic: how should one
interpret effects like exceptions, IO, or even non-termination within
logical formulae? Sidestepping such difficulties, all the refinement
type systems mentioned so far restrict φ to only contain (1) values
from the programming language; (2) interpreted function symbols
in some logic (e.g., > in the theory of integer arithmentic); and (3)
other uninterpreted function symbols. As such, potentially effectful
code creeping into the logical fragment of the language is ruled out
by syntactic fiat.

The conceptual simplicity of value-dependent types is a signif-
icant selling point: for not much work, we can significantly boost
the expressiveness of the type system. However, there are several
shortcomings: we highlight three of them here, discussing many
others throughout the paper.

An axiom- and annotation-heavy programming style. Consider
writing a type for a sorted list of integers: one would like to write
x:list int{sorted x}, for some well-defined total function sorted. In
a value-dependent system, one must adopt the following style,
introducing sorted as an uninterpreted function in the logic, and
then providing (error-prone) axioms for it.

logic function sorted : list int→bool
assume Nil S : sorted []
assume Sing S: ∀i. sorted [i]
assume Cons S: ∀i j tl. sorted (i::j::tl) = i ≤ j ∧ sorted (j::tl)

Of course, should one actually want to implement a function to
test whether a list was sorted, one would need to write a program
sorted f and give it the type l:list int→b:bool{b=sorted l}, effectively
writing the program twice and then proving a relation between
the two, which may in turn require further annotations to go
through. This style is tedious and, unfortunately, pervasive in
existing developments; for instance it accounts for thousands of
lines of specifications in the proof of miTLS. §3.4 shows how we
specify and prove Quicksort in F?—now without code duplication.

No fallback when the SMT solver fails. Automated proving via
an SMT solver is key to the success of F?—without it, even small
developments would be too tedious. Still, relying on the SMT solver
as the only way to complete a proof can be frustrating. Particularly
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when trying to prove complex properties involving induction, quanti-
fiers, or non-linear arithmetic, SMT solvers can be unpredictable, or
even hopeless. In such cases, we need finer control—in the limit, be-
ing able to supply a manually-constructed proof term, and to receive
assistance from the tool to build such a term. Most value-dependent
refinement type systems do not have a core language in which to
safely write such proofs. Old F? did have a sub-language of proof
terms, but this language, lacking support for any form of induction,
was too impoverished for real proving. Without a fallback, some
developments rely on a patchwork of tools to complete a proof,
e.g., the miTLS effort uses a combination of F7, EasyCrypt and
Coq, with careful manual checking of the properties proven in each
tool—managing this complexity is overwhelming, and ultimately,
leads to a less trustworthy formal artifact. Constructive proofs built
semi-interactively are now feasible in F?: one of our largest devel-
opments to date is a formalization of the metatheory of System Fω

in F?, with the formalization of a subset of F? itself underway.

Limited support for reasoning about effects. Refinement types are
great for stating invariants, e.g., ref (x:int{x ≥ 0}) is a convenient way
of enforcing that a reference cell is always non-negative. However,
refinement types are usually inapplicable when trying to prove
non-monotonic properties about mutable state, e.g., proving that
a reference is incremented. In the absence of this, despite having
support for effects, verification efforts in old F? often resorted to
writing code in a purely functional style that often rendered the
code inefficient. In §4, we show how refinements now integrate with
effects to enable functional correctness proofs of effectful programs.

On the redesign of F? We report on the new design and implemen-
tation of F? that remedies these (and several other) shortcomings.
Our goal is a language with (1) a core dependently typed logic of
normalizing terms, expressive enough to do proofs by well-founded
induction; (2) embedded within an effectful language, with the capa-
bility of writing precise functional correctness specification; (3) with
as much automated proving as possible from an SMT solver; (4)
packaged into a usable surface language, with good type inference;
and (5) easy interoperability with existing ML dialects (in particular,
F# and OCaml), and deployable on multiple platforms.

Our main contributions are as follows.

(1) The central organizing principle of our design is a new type-
and-effect system, which separates effectful code from a core
logic of pure functions. Unlike previous works that use kinds
to separate effects or define a single catch-all effect, we give a
semantic treatment to effects and structure them as a fine-grained,
user-defined lattice of monads (Section 2).

(2) To ensure the core language of pure functions is normalizing, we
have a new way of doing semi-automatic semantic termination
proofs based on well-founded relations. We show how this
core language can be used for both programming and proving
interesting examples (Section 3).

(3) We discuss effectful programming in Section 4. Our type system
infers the least effect for a program fragment. We prove that
our program logic for effectful programs is sound, in the partial
correctness sense. A novelty is that with logical proofs, we can
prove that intensionally effectful programs are observationally
pure—generalizing previous constructions (Launchbury and
Peyton Jones 1994).

(4) We discuss a new open-source implementation of F?, itself
programmed almost entirely in F?, that bootstraps into F# and
OCaml. Two key elements of the new typechecker are type
inference and SMT encoding—for lack of space, we cover these
topics only lightly. We summarize example programs verified in
F? to date (Section 5).

(5) We present a formalization of µF?, a core fragment of F?, dis-
tilling the main ideas of the language. We prove type soundness
(which covers partial correctness of the program logic for the
impure part); and, additionally, termination of the Pure fragment
(Section 6).

Contents The paper presents F? using a series of programming &
verification examples. An extended version including the definitions
and proofs for µF? and the definitions of a larger calculus capturing
all the features of F? are available online http://fstar-lang.org/

papers/icfp2015. An online tutorial and binary packages for major
platforms are also available from http://fstar-lang.org.

2. The high-level structure of F?

We begin by discussing a few, general organizing principles of F?.
Like prior versions, the type system of F? extends a core based

on Girard’s (1972) System Fω (i.e., higher-rank polymorphism, type
operators and higher kinds), with inductive type families, dependent
function types, and refinement types. F?, the subject of this paper,
both simplifies and generalizes the older design.

First, our new design discards the multiple base kinds of the old
system in favor of a more standard, single base kind (called Type).
Next, rather than relying on ad hoc restrictions on the kinds to en-
force logical consistency, the central organizing principle of F? has
the familiar structure of a type-and-effect system, adapted to work
with dependent types. While simplifying the overall system, we
also gain in expressiveness in several ways: most notably, whereas
prior versions of F? only provided value dependency (Swamy et al.
2013a), the syntactic class of values no longer have any special
status in the new type system; we allow dependency on arbitrary
pure computations.

Like ML, F? is a call-by-value language, incorporating a number
of primitive effects. Being primitive, we need to pick beforehand the
effects of interest: we choose, non-termination, state, exceptions and
IO. However, our design should apply equally to other choices of
effects, e.g., one might incorporate non-determinism or concurrency.

Following Moggi (1989), we observe that such a language has an
inherently monadic semantics. Every computation has a computation
type m t, for some effect m, while functions have arrow types with
effectful co-domains, e.g., fun x→e has a type of the form t→ m t ′.
Traditionally, the effect m is left implicit in type systems for ML;
or, when treated explicitly, like Moggi, one may pick a single effect
(or category, depending on the setting) in which to interpret all
computations. Rather then settling on just a single effect, F?, in a
style reminiscent of Wadler and Thiemann (2003), is parameterized
by a join semi-lattice of effects, each element denoting some subset
of all the primitive effects of the language.

By default, F? is configured with the following effect lattice:

PURE // DIV //
++
STATE // ALL

EXN

33

At the bottom, we have PURE, which classifies computations that
are pure, total functions. The effect DIV is for computations that
may diverge (i.e., they may not terminate), but are otherwise pure.
STATE is for computations that may read, write, allocate, or free
references in the heap; EXN is for code that may raise exceptions;
ALL-computations may have all the effects mentioned so far, as
well as IO. We consider other effect lattices elsewhere in the paper,
although the bottom of the lattice is always PURE.

We view the language of PURE computations as a logic, using
it to write specifications and proofs. The type-and-effect system
ensures that the PURE-terms are always normalizing, even though
the rest of the program may be effectful. Thus, we achieve with a
fairly standard type-and-effect system what others have done with
other, non-standard means, e.g., Aura (Jia et al. 2008) and prior
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M M.Post t M.Pre

PURE t→Type Type
DIV t→Type Type
STATE t→heap→Type heap→Type
EXN either t exn→Type Type
ALL either t exn→heap→Type heap→Type

Table 1. Signatures of the default effects.

versions of F? (Swamy et al. 2013a) use a system of kinds, while
Zombie (Casinghino et al. 2014) uses a novel consistency classifier
to separate pure and impure code. As we will see, our style of a type-
and-effect system has a number of benefits, including promoting
better reuse of library code, and greater flexibility in refining the
effects in the language, e.g., prior systems only distinguish pure and
effectful code, whereas our effect lattice allows for finer distinctions.

Unlike other systems (e.g., (Wadler and Thiemann 2003)), effects
in F? are not merely syntactic labels. Instead, each effect is equipped
with a predicate-transformer semantics, precisely describing the
logical behavior of that effect. In addition to providing a semantic
foundation for our language, the semantics of effects naturally yields
a program logic with a weakest pre-condition calculus, which is
essential for computing verification conditions by typing. The main
typing judgment for F? has the following form:

Γ ` e : M t wp

meaning that in a context Γ, for any property post dependent on the
result of an expression e and its effect, if wp post is valid, then (1)
e’s effects are delimited by M; and (2) e returns a t satisfying post, or
diverges, if permitted by M. We emphasize that the well-typedness of
e depends on the validity of the formula wp post—in §3, e.g., we give
a PURE function that fails to terminates when its precondition is not
met; in §5.1, we discuss our use of an SMT solver to automatically
discharge proof obligations.

As such, each effect M is indexed by a result type t and a predi-
cate transformer wp : M.WP t that maps an (effect- and result-type-
specific) post-condition post : M.Post t to an (effect-specific) pre-
condition wp post : M.Pre. For each effect M, the type of predicate
transformers M.WP t forms a monad, i.e., each M.WP is equipped
with two combinators, M.return and M.bind satisfying the usual
monad laws. This is the basic structure of a so-called Dijkstra
monad, first proposed by Swamy et al. (2013b) and developed fur-
ther by Jacobs (2014) for just a single effect; here, we generalize
the construction to work with a lattice of effects. As such, for each
M’ greater than or equal to M in the lattice, we require a function
M.lift M’ : WP M a→WP M’ a, a monad morphism that must com-
mute with the binds and returns in the expected way—we say that
M is a sub-effect of M’. We expect the set of lifts to form a lattice
and write M tM’ for the least uper bound of two effects.

The lattice and monadic structure of the effects are relevant
throughout the type system, but nowhere as clearly as in (T-Let), the
rule for sequential composition, which we illustrate below.

Γ ` e1 : M1 t1 wp1 Γ,x:t1 ` e2 : M2 t2 wp2 M = M1tM2
wp′1 = M1.lift M wp1 wp′2 = M2.lift M wp2 x 6∈ FV (t2)

Γ ` let x = e1 in e2 : M t2 (M.bind wp′1(fun x→wp′2))

The sequential composition at the level of programs is captured se-
mantically by the sequential composition of predicate transformers,
i.e., by M.bind. (We will see the role of M.return in §3.4.) To com-
pose computations with different effects, M1 and M2, we lift them
to M, the least effect that includes them both. Since the lifts are mor-
phisms, we get the expected properties of associativity of sequential
composition and lifting—the specific order in which we apply lifts
is irrelevant to the programmer. The type system is designed to infer
the least effect for a computation.

No parametric polymorphism on effects. For easy reference, Ta-
ble 1 shows the signature of the effects in our default lattice. (In
the table, either is the standard tagged union type.) In each case,
M.WP t = M.Post t→M.Pre. We explain these signatures in detail
in the coming sections, starting with the PURE effect in the next
section. Before proceeding, we point out an important design choice:
F? lacks parametric polymorphism over effects. We choose this
design for two reasons. First, as should be evident already from the
table, since the signature of an effect has a kind that depends on
the effect itself, writing effect-parametric types requires kind poly-
morphism and kind operators. Furthermore, obtaining a practically
usable language with effect polymorphism, even for languages with
much simpler type systems, is still an area of active research, start-
ing from the late ’80s (Lucassen and Gifford 1988) and continuing
vigorously at present (e.g., in works by Swamy et al. (2011) and
Leijen (2014)). The lack of effect polymorphism keeps inference
tractable, and the loss in expressiveness is somewhat offset by the
presence of sub-effects.

3. Programming and proving with pure functions
Pure expressions are given the computation type PURE t wp, where
wp: PURE.Post t→PURE.Pre. A pure post-condition is a predicate
on t-typed results, while a pure pre-condition is simply a proposition,
i.e., PURE.Post t = t→Type and PURE.Pre = Type. As shown below,
to prove a property post about a pure result x, one must just prove
post x, and the sequential composition of pure computations involves
the functional composition of their predicate transformers.

PURE.return a (x:a) = fun (post:PURE.Post a)→post x
PURE.bind a (wp1:PURE.WP a) (wp2:a→PURE.WP b) =

fun (post:PURE.Post b)→wp1 (fun x→wp2 x post)

As an example, consider the following term (where l:list t):

List.hd l : PURE t wp
where wp (post:PURE.Post t) = ∃hd. l=hd:: ∧ post hd

This example illustrates that purity (which includes totality and
termination) can be conditional. To prove that the term is well-typed,
we need to prove the validity of wp post for some given pure post-
condition, such as post = fun x→True. This amounts to showing that
∃hd. l=hd:: , which ensures that List.hd l does not fail because of a
non-exhaustive case-analysis.

For terms that are unconditionally pure, we introduce Tot, an
abbreviation for the special case of the PURE effect defined below:

effect Tot (t:Type) = Pure t (fun post→∀x. post x)

When writing specifications, it is often convenient to use traditional
pre- and post-conditions instead of predicate transformers. Accord-
ingly, we also introduce the abbreviations below, with keywords
requires and ensures only for readability:

effect Pure (t:Type) (requires (p:PURE.Pre)) (ensures (q:PURE.Post t))
= PURE t (fun post→p ∧ ∀x. q x =⇒ post x)

Notations: Lambda abstractions are introduced with the notation
fun (b1) ... (bn)→ε, where the bi range over binding occurrences for
variables, and the body ε ranges over both types and expressions.
Binding occurrences come in two forms, x:t for binding an expres-
sion variable at type t; and a:k, for a type variable at kind k. Each of
these may be preceded by an optional #-mark, indicating the bind-
ing of an implicit parameter. In lambda abstractions, we generally
omit annotations on bound variables (and the enclosing parenthe-
ses) when they can be inferred, e.g., we may write fun x→x + 1 or
fun (#a:Type) (x:a)→x. Function types and kinds are written b→σ ,
where σ ranges over computation types m t and kinds k—note the
lack of enclosing parentheses; as we will see, this convention leads
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to a more compact notation when used with refinement types. The
variable bound by b is in scope to the right of the arrow. When the
co-domain does not mention the formal parameter, we may omit the
name of the parameter. For example, we may write int→m int or
#a:Type→Tot (a→Tot a).

We use the Tot effect by default in our notation for curried
function types: on all but the last arrow, the implicit effect is Tot.

b1 → ...→bn →M t wp , b1 →Tot ( ...→Tot (bn →M t wp))

So, the polymorphic identity function has type #a:Type→a→Tot a.
The language of logical specifications is included within the

language of types. However, as illustrated above, we use standard
syntactic sugar for the logical connectives ∀, ∃, ∧ , ∨ , =⇒ , and
⇐⇒ . The appendix shows how we encode these in types. We also
overload these connectives for use with boolean expressions—F?

automatically coerces booleans to Type as needed.

3.1 Refinement types and structural subtyping
While the verification machinery of F? is now founded on effects
equipped with predicate transformers, it is often more convenient
to specify properties as refinement types. Hence, F? retains the
refinement types of its prior versions: a refinement of a type t is
a type x:t{φ} inhabited by expressions e : Tot t that additionally
validate the formula φ [e/x]. For example, F? defines the type
nat = x:int{x ≥ 0}. Using this, we can write the following code:

val factorial: nat→Tot nat
let rec factorial n = if n = 0 then 1 else n ∗ factorial (n-1)

Unlike subset types or strong sums Σx:t.φ in other dependently
typed languages, F?’s refinement types x:t{φ} come with a subtyp-
ing relation, so, for example, nat <: int; and n:int can be implicitly
refined to nat whenever n ≥ 0. Specifically, the representations of
nat and int values are identical—the proof of x ≥ 0 in x:int{x ≥ 0}
is never materialized. As in old F?, this is convenient in practice, as
it enables data and code reuse as well as automated reasoning.

A new subtyping rule allows refinements to better interact with
function types and effectful specifications, further improving code
reuse. For example, the type of factorial declared above is equivalent
by subtyping to the following refinement-free type:

x:int→PURE int (fun post→x ≥ 0 ∧ ∀y. y ≥ 0 =⇒ post y)

We also introduce syntactic sugar for mixing refinements and
dependent arrows, writing x:t{φ}→σ for x:(x:t{φ})→σ .

Refinement types are more than just a notational convenience:
nested refinements within types can be used to specify properties
of unbounded data structures, and other invariants. For example,
the type list nat describes a list whose elements are all non-negative
integers, and the type ref nat describes a heap reference that always
contains a non-negative integer.

3.2 Indexed type families
Aside from arrows and primitive types like int, the basic building
blocks of types in F? are recursively defined indexed datatypes.
For example, we give below the abstract syntax of the simply typed
lambda calculus in the style of de Bruijn (we only show a few cases).

type typ = | TUnit : typ | TArr: arg:typ→ res:typ→typ
type var = nat
type exp = | EVar : x:var→exp | ELam : t:typ→body:exp→exp ...

The type of each constructor is of the form b1 → ...→bn →T τ1 ... τm,
where T is type being constructed. This is syntactic sugar for b1 →
...→bn →Tot (T τ1 ... τm), i.e., constructors are total functions.

Given a datatype definition, F? automatically generates a few
auxillary functions: for each constructor, it provides a discriminator;
and for each argument of each constructor, it provides a projector.

For example, for typ, we obtain the following two discriminators
and two projectors.
let is TUnit = function TUnit→true | → false
let is TArr = function TArr →true | → false
let TArr.arg (t:ty{is TArr t}) = match t with TArr arg →arg
let TArr.res (t:ty{is TArr t}) = match t with TArr res→ res

The standard prelude of F? defines the list and option types, as
usual. F? supports the standard syntactic sugar for lists, and it will
be clear from the context when we make use of projectors and
discriminators for these types.

In contrast with a system like Coq, F? does not generate induc-
tion principles for datatypes—they may not even be inductive, since
F? allows non-positive definitions. Instead, the programmer directly
writes fixpoints and general recursive functions, and a semantic
termination checker ensures consistency.

Types can be indexed by both pure terms and other types. For
example, we show below (just two rules of) an inductive type that
defines the typing judgment of the simply-typed lambda calculus.
type env = var→Tot (option typ)
val extend: env→typ→Tot env
let extend g t y = if y=0 then Some t else g (y − 1)
type typing : env→exp→typ→Type = ...
| TyUn : #g:env→typing g EUnit TUnit
| TyLam : #g:env→#t:typ→#e1:exp→#t’:typ→

typing (extend g t) e1 t’→typing g (ELam t e1) (TArr t t’)

Refinements and indexed types work well together. Notably,
pattern matching on datatypes comes with a powerful exhaustiveness
checker: one only needs to write the reachable cases, and F? relies
on all the information available in the context, not just the types of
the terms being analyzed. For example, we give below an inversion
lemma proving that the canonical form of a well-typed closed value
with an arrow type is a λ -abstraction with a well-typed body. The
indexing of d with emp, combined with the refinements on e and t,
allows F? to prove that the only reachable case for d is TyLam.
Furthermore, the equations introduced by pattern matching allow
F? to prove that the returned premise has the requested type.
let emp x = None
let value = function ELam | EVar | EUnit →true | → false
val inv lam: e:exp{value e}→t:typ{is TArr t}→d:typing emp e t→

Tot (typing (extend emp (TArr.arg t)) (ELam.body e) (TArr.res t))
let inv lam e t (TyLam premise) = premise

3.3 Semantic proofs of termination
As in any type theory, the soundness of our logic relies on the nor-
malization of pure terms. We provide a fully semantic termination
criterion based on well-founded partial orders. This is in sharp con-
trast with the type theories underlying systems like Coq, which
rely instead on a syntactic “guarded by destructors” criterion. As
has often been observed (e.g., by Barthe et al. 2004, among sev-
eral others), this syntactic criterion is brittle with respect to simple
semantics-preserving transformations, and hinders proofs of termi-
nation for many common programming patterns. Worse, syntactic
checks interact poorly with other aspects of the logic, leading to
unsoundnesses when combined with seemingly benign axioms.1

The type system of F? is parameterized by the choice of a well-
founded partial order (≺ ) : #a:Type→#b:Type→a→b→Type, over
all terms (pronounced “precedes”). We provide a new rule for typing
fixpoints, making use of this well-founded order to ensure that the
fixpoint always exists, as shown below:

(T-Fix)

t f = y:t→PURE t’ wp Γ ` δ : Tot (y:t→Tot t’’)
Γ,x:t, f:(y:t{δy ≺ δx}→PURE t’ wp) ` e : PURE t’ wp

Γ ` let rec fδ : t f = fun x→e : Tot t f

1 https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html
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When introducing a recursive definition of the form let rec fδ : (y:t→
PURE t’ wp) = fun x→e, we type the expression e in a context that
includes x:t and f at the type y:t{δy ≺ δx}→PURE t’ wp, where the
decreasing metric δ is any pure function. Intuitively, this rule ensures
that, when defining the i-th iterate of f x, one may only use previous
iterates of f defined on a strictly smaller domain. We think of δ as
a decreasing metric on the parameter, which F? picks by default
(as shown below) but which can also be provided explicitly by the
programmer (as shown in §3.3.1). F? also provides general recursion
for impure functions; the typing rule for this is standard and does
not require the use of a termination metric.

We illustrate rule (T-Fix) for typing factorial (defined above).
The body of factorial is typed in a context that includes n:nat and
factorial: m:nat{m ≺ n}→Tot nat, i.e., in this case, F? picks δ=id.
At the recursive call factorial (n-1), it generates the proof obligation
n-1 ≺ n. The implementation of F? instantiates the relation ≺ with
the well-founded partial order below (which includes the usual
ordering on nat) and easily dispatches this obligation.

3.3.1 The default well-founded ordering
F? instantiates its well-founded partial order as follows:

(1) Given i, j : nat, we have i ≺ j⇐⇒ i < j. The negative integers are
not related by the ≺ relation.

(2) Elements of the type lex t are ordered lexicographically, as
detailed below.

(3) The sub-terms of an inductively defined term precede the term
itself, that is, for any pure term e with inductive type T 6=lex t, if
e=D e1 . . . en we have ei ≺ e. for all i.

A larger relation would increase the expressiveness of our
termination checker. For instance, we plan to add f x ≺ f when f
is a total function and multi-set orders, although, so far, we have not
found these necessary for our examples.

For lexicographic orderings, F? includes in its standard prelude
the following inductive type (with its syntactic sugar):

type lex t = LexTop : lex t | LexCons: #a:Type→a→ lex t→ lex t

where %[v1;...;vn]@ , LexCons v1 ... (LexCons vn LexTop)

For well-typed pure terms v, v1, v2, v1’, v2’, the ordering on lex t is
the following:

(2a.) LexCons v1 v2 ≺ LexCons v1’ v2’, if and only if, either v1 ≺ v1’;
or v1=v1’ and v2 ≺ v2’.

(2b.) If v:lex t and v 6= LexTop, then v ≺ LexTop.

For functions of several arguments, one aims to prove that a metric
on some subset of the arguments decreases at each recursive call. By
default, F? chooses the metric to be the lexicographic list of all the
non-function-typed arguments in order. When the default does not
suffice, the programmer can override it with an optional decreases
annotation, as we will see below.

3.3.2 Parallel substitutions: A non-trivial termination proof
Consider the simply typed lambda calculus from §3.2. It is con-
venient to equip it with a parallel substitution that simultaneously
replaces a set of variables in a term. Proving that parallel substitu-
tions terminate is tricky—e.g., Adams (2006); Benton et al. (2012)all
give examples of ad hoc workarounds to Coq’s termination checker.
Figure 1 shows a succinct, complete development in F?.

Before looking at the details, consider the general structure of
the function subst at the end of the listing. The first three cases are
easy. In the ELam case, we need to substitute in the body of the
abstraction but, since we cross a binder, we need to increment the
indexes of the free variables in all the expressions in the range of

1 type presub = {
2 sub:var→Tot exp; (∗ the substitution itself ∗)
3 renaming:bool; (∗ an additional field for the proof; morally ghost ∗)
4 } (∗ sub invariant: if the flag is set, then the map is just a renaming ∗)
5 type sub = s:presub{s.renaming =⇒ (∀ x. is EVar (s.sub x))}
6 let sub inc : sub = {renaming=true; sub=(fun y→EVar (y+1))}
7 let ord b = function true→0 | false→1 (∗ an ordering on booleans ∗)
8 val subst : e:exp→s:sub→Pure exp (requires true)
9 (ensures (fun e’→s.renaming ∧ is EVar e =⇒ is EVar e’))

10 (decreases %[ord b (is EVar e); ord b (s.renaming); e])
11 let rec subst e s = match e with
12 | EUnit→EUnit
13 | EVar x→s.sub x
14 | EApp e1 e2→EApp (subst e1 s) (subst e2 s)
15 | ELam t body→
16 let shift sub : var→Tot (e:exp{s.renaming =⇒ is EVar e}) =
17 fun y→ if y=0 then EVar y else subst (s.sub (y-1)) sub inc in
18 ELam t (subst body ({s with sub=shift sub}))

Figure 1. Parallel substitutions on λ -terms

the substitution—of course, incrementing the free variables is itself
a substitution, so we just reuse the function being defined for that
purpose: we call subst recursively on body, after shifting the range
of the substitution itself, using shift subst.

Why does this function terminate? The usual argument of being
structurally recursive on e does not work, since the recursive call
at line 17 uses s.sub (y-1) as its first argument, which is not a sub-
term of e. Intuitively, it terminates because in this case the second
argument is just a renaming (meaning that its range contains only
variables), so deeper recursive calls will only use the EVar case,
which terminates immediately. This idea was originally proposed
by Altenkirch and Reus.

To formalize this intuition in F?, we instrument substitutions sub
with a boolean flag renaming, with the invariant that if the flag is
true, then the substitution is just a renaming (lines 1–5). Notice that
given a nat→Tot exp, it is impossible to decide whether or not it is
a renaming; however, by augmenting the function with an invariant,
we can prove that substitutions are renamings as they are defined.
Using this, we provide a decreases metric (line 10) as the lexical
ordering %[ord b (is EVar e); ord b (s.renaming); e]).

Let us now consider the termination of the recursive call at
line 17. If s is a renaming, we are done; since e is not an EVar,
and s.sub (y -1) is, the first component of the lexicographic ordering
strictly decreases. If s is not a renaming, then since e is not an
EVar, the first component of the lexicographic order may remain the
same or decrease; but sub inc is certainly a renaming, so the second
component decreases and we are done again.

Turning to the call at line 18, if body is an EVar, we are done since
e is not an EVar and thus the first component decreases. Otherwise,
body is a non-EVar proper sub-term of e; so the first component
remains the same while the third component strictly decreases. To
conclude, we have to show that the second component remains the
same, that is, subst shift is a renaming if s is a renaming. The type
of subst shift captures this property. In order to complete the proof
we finally need to strengthen our induction hypothesis to show that
substituting a variable with a renaming produces a variable—this is
exactly the purpose of the ensures-clause at line 9.

3.4 Intrinsic and extrinsic proofs on pure definitions
Prior systems of refinement types, including old F?, the line of work
on liquid types (Rondon et al. 2008), and the style of refinement
types used by Freeman and Pfenning (1991), only support type-
based reasoning about programs, i.e., the only properties one can
derive about a term are those that are deducible from its type.
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For example, in those systems, given id: int→ int, even though
we may know that id=fun x→x, proving that id 0 = 0 is usually not
possible (unless we give id some other, more precise type). This
limitation stems from the lack of a fragment of the language in
which functions behave well logically—int→ int functions may have
arbitrary effects, thereby excluding direct reasoning. Specifically,
given id:int→ int, we cannot prove that 0 has type x:int{x=id 0}. In
older versions of F? (which only permitted value dependency) the
type is just not well-formed, since id 0 is not a value; with liquid
types, functions in refinements are uninterpreted, so although the
type is well-formed, the proof still does not go through.

With its semantic treatment of effects, F? now supports direct
reasoning on pure terms, simply by reduction. For example, F?

proves List.map (fun x→x + 1) [1;2;3] = [2;3;4], given the standard
definition of List.map with no further annotations—as expected
by programmers working in type theory.2 The typing rule below
enables this feature by using monadic returns. In effect, having
proven that a term e is pure, we can lift it wholesale into the logic
and reason about it there, using both its type t and its definition e.

(T-Ret) Γ ` e : Tot t

Γ ` e : PURE t (PURE.return t e)

The importance of being able to reason directly about defi-
nitions is hard to overstate. Lacking this ability, prior versions
of F? encouraged an axiom- and annotation-heavy programming
style. The reader may wish to compare the F? proof of Quick-
sort developed next with the analogous proof in F?-v0.7, available
at http://rise4fun.com/FStar/UsSR.

Verifying Quicksort Consider the following standard definition
of Quicksort—we will verify its total correctness in a few steps,
illustrating one style of semi-automatic proving in F?.

open List
let rec quicksort f = function []→ []
| pivot::tl→ let hi, lo = partition (f pivot) tl in

append (quicksort f lo) (pivot::quicksort f hi)

The functions partition and append are defined as usual in the List
library, with the types shown below. The main thing to note is that
they are both total functions.

val partition: #a:Type→ (a→Tot bool)→ list a→Tot (list a ∗ list a)
val append: #a:Type→ list a→ list a→Tot (list a)

First, we need to write a specification against which to verify
quicksort, starting with sorted f l, which decides when l is sorted with
respect to the comparison function f; and count x l which counts the
number of occurrences of x in l. We also define a type total order on
binary boolean functions.

val sorted: #a:Type→ (a→a→Tot bool)→ list a→Tot bool
let rec sorted f = function x::y::tl→ f x y && sorted f (y::tl) | →true

val count: #a:Type→a→ list a→Tot nat
let count x = function
| []→0
| hd::tl→ if hd=x then 1 + count x tl else count x tl

let mem x tl = count x tl > 0

type total order (a:Type) (f: (a→a→Tot bool)) =
(∀ a. f a a) (∗ reflexivity ∗)
∧ (∀ a1 a2. (f a1 a2 ∧ f a2 a1) =⇒ a1 = a2) (∗ antisymmetry ∗)
∧ (∀ a1 a2 a3. f a1 a2 ∧ f a2 a3 =⇒ f a1 a3) (∗ transitivity ∗)
∧ (∀ a1 a2. f a1 a2 ∨ f a2 a1) (∗ totality ∗)

2 An implementation detail is that F? delegates reasoning about the combina-
tion of reduction and conversion to an SMT solver, rather than relying on
custom-built reduction machinery.

With these definitions in hand, we can write our specification of
Quicksort: if f is a total order, then quicksort f l returns a permutation
of l that is sorted according to f.

val quicksort: #a:Type→ f:(a→a→Tot bool){total order a f}
→ l:list a→Tot (m:list a{sorted f m ∧ (∀ i. count i l = count i m)})

(decreases (length l))

However, without some more help, F? fails to verify the program—
the error message it reports is shown below (only the variables have
been renamed). The position it reports refers to the parameter lo of
the first recursive call to quicksort, meaning that F? failed to prove
that the function terminates.

Subtyping check failed;
expected type lo:list a{%[length lo] << %[length l]};
got type (list a) (qs.fst(99,19-99,21))

We need to convince F? that, at each recursive call, the lengths of
lo and hi are smaller than the length of the original list. We also need
to prove that all the elements of lo (resp. hi) are smaller than (resp.
greater or equal to) the pivot; that appending sorted list fragments
with the pivot in the middle produces a sorted list; and that the
occurrence counts of the elements are preserved.

In prior systems, one would have to re-type-check the definitions
of append and partition to prove these properties, which is extremely
non-modular. Instead, F? allows one to prove lemmas about these
definitions, after the fact—a style we call extrinsic proof, in contrast
with intrinsic proofs, which work by enriching the type and defini-
tion of a term to prove the property of interest. In this style, a lemma
is any unit-returning Pure function; we provide the following sugar
for it.

effect Lemma (requires p) (ensures q) =
Pure unit (requires p) (ensures (fun →q))

We give below a simple extrinsic proof that append sums occur-
rence counts. In general, F? does not attempt proofs by induction
automatically—instead, the user writes a fixpoint, setting up the
induction skeleton, and relies on F? to prove all cases.

val app c: #a:Type→ l:list a→m:list a→x:a→Lemma (requires True)
(ensures (count x (append l m) = count x l + count x m))

let rec app c l m x = match l with
| []→ () | hd::tl→app c tl m x

With an extrinsic proof, we gain modularity but lose (some)
convenience: if we had instead a (non-modular) intrinsic proof giv-
ing the type l:list a→m:list a→Tot (n:list a{∀x. count x n = count x l
+ count x m}) to append, then every call to happen would yield the
property. With an extrinsic proof, to use the app c property of
append l m, we need to explicitly call the lemma, e.g., to complete
the proof of quicksort, we would have to pollute its definition with a
call to lemma, which is less than ideal.

Bridging the gap between extrinsic and intrinsic proofs. To have
the best of both worlds, we would like to automatically apply
extrinsically proved properties to refine the types of existing terms.
Accordingly, F? allows Lemmas to be decorated with SMT patterns,
as illustrated below on two further lemmas in the proof of quicksort:

val partition lemma: #a:Type→ f:(a→Tot bool)→ l:list a→Lemma
(requires True)
(ensures (∀ hi lo. (hi, lo) = partition f l

=⇒ (length l = length hi + length lo
∧ (∀ x. (mem x hi =⇒ f x) ∧ (mem x lo =⇒ not (f x))

∧ (count x l = count x hi + count x lo)))))
[SMTPat (partition f l)] (∗ Automation hint ∗)

let rec partition lemma f = function ::tl→partition lemma f tl | → ()
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val sorted app lemma: #a:Type→ f:(a→a→Tot bool){total order a f}
→ l1:list a{sorted f l1}→ l2:list a{sorted f l2}
→p:a→Lemma

(requires (∀ y. (mem y l1 =⇒ not (f p y)) ∧ (mem y l2 =⇒ f p y)))
(ensures (sorted f (append l1 (p::l2))))
[SMTPat (sorted f (append l1 (p::l2)))] (∗ Automation hint ∗)

let rec sorted app lemma f l1 l2 p = match l1 with
| []→ () | hd::tl→sorted app lemma f tl l2 p

The statements of these lemmas are detailed, but self-explanatory
and in both cases, the proofs are one-line inductions. Adding those
ad hoc properties to the intrinsic types of functions like partition
and append would be completely inappropriate—this is especially
true in the case of sorted app lemma, a property of append highly
specialized for the proof of quicksort.

The main point to call out here is the use of SMTPat annotations
as automation hints. In the case of partition lemma, the hint instructs
F? (and the underlying solver) to apply the property for any well-
typed term of the form partition f l. For sorted app lemma, the hint
is more specific: the verifier can use the property for any well-typed
occurrence of sorted f (append l1 (p::l2)). With these lemmas and
the addition of [SMTPat (count x (append l m))] to append count, F?

automatically completes the proof of quicksort.
This proof style is reminiscent of ACL2 (Kaufmann and Moore

1996) but, unlike first-order, untyped ACL2, the underlying mech-
anism based on SMT solving and pattern-based quantifier instan-
tiation (dating from the Stanford Pascal verifier of Luckham et al.
1979) works well with higher-order dependently typed programs.

The exact mixture of extrinsic and intrinsic proof to use is a
matter of taste and experience. A rule of thumb is to prove compactly
stated, generally useful properties intrinsically, and to prove the rest
extrinsically. For example, our proof of the quicksort function itself
is intrinsic, since it is easy to state and generally useful. One the
other hand, sorted app lemma is best proved extrinsically.

Another constraint is that termination must always be proven in-
trinsically; this differs from Zombie (Casinghino et al. 2014), which
provides a method of doing extrinsic termination proofs. While the
extrinsic termination proofs are elegant in principle, in practice, as
one of the authors of Zombie says in private communication, the
proofs (which themselves must be proven terminating intrinsically)
“repeat the same kind of recursion that the original function per-
formed, with a lot of extra equational reasoning, so they can get
quite long”. For example, for a 25-line implementation of mergesort
in Zombie, the proof of termination alone (not functional correct-
ness) is nearly 300 lines long.3 In contrast, the flexibility of F?’s
termination check and the automation it provides often keeps these
proofs fairly simple. Finally, as we discuss next, intrinsic proofs are
the only option for programs with effects.

4. Specifying and verifying programs with effects
F? provides primitive support for non-termination, state, exceptions
and IO. In principle, one could configure F? to use the powerset
lattice over these effects, e.g., we could include an effect TotST for
the total correctness of stateful code.4 Or one could choose to split
reading, writing, and (de-)allocation into separate atomic effects
and take the powerset over this larger set. Or, still finer, one could
split operations on separate heap regions (down to singleton cells)
into separate atomic effects. Effect inference in F? enables such
fine-grained effect tracking. The effect of a term is automatically

3 https://code.google.com/p/trellys/source/browse/trunk/
zombie-trellys/test/Sort.trellys
4 Our implementation can support TotST for references to first-order values.
With a first-order store, our PURE normalization results should carry over
easily to TotST (although we have not yet proven it). Totality for programs
with higher order store is future work.

computed as the least upper-bound of the effects of its subterms. To
escape this discipline of ever-increasing effects, F? also supports
coercions that can be used to forget the effects of an expression
when they cannot be observed by the context.

Neither fine-grained effect tracking nor effect coercions were
possible in old F?, or for that matter in frameworks based on
approaches like HTT (Nanevski et al. 2008), which use a single
“catch-all” effect to capture all impure operations in the language.

The rest of this section provides some details. For brevity, we say
little about the EXN effect, covering exceptions in ALL only. The
online version of the paper provides more details about EXN.

4.1 The DIV effect
The specification of every effect in the F? prelude includes its signa-
ture, the functions required by the signature (e.g., bind and return on
predicate transformers), and a flag that indicates whether the effect
includes non-termination. Given an effect lattice, we require that
the effects that exclude non-termination be downward closed. By
default, only the PURE effect excludes non-termination, and the DIV
effect is the least in the lattice that includes non-termination.

Aside from the non-termination flag, the signature of the DIV
effect is identical to the one of PURE effect given in §3, except
that specifications in DIV are interpreted in a partial-correctness
semantics. We use the abbreviations Dv and Div, which are to to DIV
what Tot and Pure are to PURE.

We may use DIV when a termination proof of a pure function
requires more effort than the programmer is willing to expend, and,
of course, when a function may diverge intentionally.

For example, we give below the top-level statement of progress
and preservation for our simply typed lambda calculus, showing
only show the signatures of typecheck and typed step.5

val typecheck: env→exp→Tot (option typ)
val typed step : e:exp{is Some (typecheck emp e) ∧ not(value e)}

→Tot (e’:exp{typecheck emp e’ = typecheck emp e})
val eval : e:exp{is Some (typecheck emp e)}

→Dv (v:exp{value v ∧ typecheck emp v = typecheck emp e})
let rec eval e = if value e then e else eval (typed step e)

Recursive functions with the DIV effect need not respect the
well-founded ordering of F?, and indeed may diverge. Expressions
typed in the PURE effect (such as value e and typed step e above)
are implicitly promoted to the DIV effect, as needed. This promotion
relies on sub-effecting according to the effect lattice. Intuitively,
a function proven totally correct can also be used in a partial
correctness context. Accordingly, F? applies an identity lifting
defined in the prelude:

PURE.lift DIV (a:Type) (wp:PURE.WP a) : DIV.WP a = wp

4.2 The STATE effect
F? provides primitive support for mutable heap references, including
dynamic allocation and deallocation. We have yet to implement a
runtime system that actually reclaims memory on deallocation, but
the language is designed to accommodate it soundly.

A stateful post-condition STATE.Post t is a predicate relating
the t-typed result of a computation to its final state; a stateful
pre-condition is a predicate on the initial state. States (h, of type
heap) range over abstract partial maps from references to their
contents, with operations sel, and upd behaving according to the
usual McCarthy (1962) axioms, and with a predicate, has h x, to
indicate that x is in the domain of h.

5 With more work, we can also prove that evaluation in the simply typed
lambda calculus terminates; an example in our test suite does it using
hereditary substitutions.
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We give below specifications of the stateful primitives to read
and write references. For example, to update a reference using r := v,
one must prove that the initial heap h0 has the reference r; in return,
after the update, h0 evolves to upd h0 r v.

val (!) : #a:Type→ r:ref a→STATE a (fun post h0→
has h0 r ∧ post (sel h0 r) h0)

val (:=) : #a:Type→ r:ref a→v:a→STATE unit (fun post h0→
has h0 r ∧ post () (upd h0 r v))

The monadic combinators for STATE.WP t are shown below.
As expected, returning a pure value leaves the heap unchanged,
and sequential composition at the level of programs corresponds to
function composition of predicate transformers.

STATE.return a x post h = post x h
STATE.bind a b wp1 wp2 post = wp1 (fun x→wp2 x post)

We define abbreviations to work more directly with the
STATE effect and two-state specifications. The computation type
ST a (requires pre) (ensures post) (modifies s) is the type of a stateful
computation which when run in an initial heap h0 that satisfies
pre h0, either diverges or produces an a result v:a and heap h1 sat-
isfying post h0 v h1, where on their shared domain, h1 differs from
h0 only in locations in the set of references s. We use ST to write
specifications for alloc and free.

val alloc : #a:Type→v:a→ST (ref a) (requires (fun →True))
(ensures (fun h0 r h1→not(has h0 r) ∧ has h1 r ∧ sel h1 r=v))
(modifies {}}

val free: #a:Type→ r:ref a→ST unit (requires (fun h0→has h0 r))
(ensures (fun h0 r h1→not (has h1 r))) (modifies {r})

When lifting from DIV to STATE, we use the following combi-
nator, indicating that DIV computations never touch the heap.

DIV.lift STATE a wp p h = wp (fun x→p x h)

The ALL effect As usual, when combining effects, we have to be
careful—not all effects commute with one another. Post-conditions
in the ALL monad have signature either a exn→heap→Type, where
either is the tagged union type and exn is the standard (extensible)
datatype of exceptions. In lifting from STATE (resp. EXN) to ALL,
we specify the usual ordering of ML, with STATE following EXN,
and thus we have:

STATE.lift ALL a wp p = wp (fun x→p (Inl x))
EXN.lift ALL a wp p h = wp (fun r→p r h)

4.3 Forgetting effects, logically
The effect of a term is the least upper-bound of the effects of its
subterms. However, we would like to be able to relax this discipline
when the effect of a term is unobservable to its context. For example,
consider computations that use state locally, or those that handle all
exceptions that may be raised: it would be convenient to treat such
computations purely. Of course, this must be done with caution:
there are two points to consider, related to intensionality.

(1) Termination in F? is an intensional property, i.e., termination
proofs must be done intrinsically, relying on the definition of the
term and not just its observational behavior. Thus, there is no way
to start with a computation that has the divergence effect, prove
that it is observationally equivalent to a term that terminates,
and thereby forget its divergence effect. Every other effect is
treated extensionally, and as we will see below, we provide a
means of forgetting those effects, modulo a logical guard. For
example, given a program that is proven totally correct while
using state and exception, it may be possible to prove that it has
no observable effect at all.

(2) The other intensional element of F? is its treatment of the
PURE effect. As discussed in §3.4, we provide direct reasoning
on the definitions of PURE functions. Definitional reasoning
in this style does not apply to code that is only proven to
be observational effect-free, as it it unclear how to reason in
the logic about programs that internally throw exceptions, use
state, and perhaps even non-determinism and concurrency. (In
principle, one may interpret some of these effects using pure
functions, but this is not currently supported.)

With these points in mind, our strategy for forgetting effects
involves defining a second effect lattice, identical in structure to the
first. For each effect M in the first lattice, we have an effect M† in
the second, the extensional counterpart of (the intensional effect) M.
The effects observable in code with effect M† are only those in M,
although internally, M† computations may use other effects of the
language. To combine the two lattices, we give identity liftings from
each M to its counterpart M†. Additionally, we provide forgetful
coercions from M† to M’†, as long as the non-termination effect is
not forgotten.

For example, consider a base lattice with PURE, DIV, TotST,
STATE, and ALL where TotST is the effect of total, stateful compu-
tations. These effects are ordered as shown below. Our construction
first copies this lattice, introducing identity liftings (shown in dotted
arrows below) from each M to its extensional counterpart M†. Fi-
nally, we have coercions (shown in squiggly arrows) to (1) forget
exceptions from ALL† to STATE†; (2) forget state from STATE† to
DIV†; and (3) forget state from TotST† to PURE†.
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rr
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,,
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Some points in this lattice are potentially uninteresting. For
example, ALL† is degenerate—it differs in no meaningful way from
ALL. Sometimes, it may be worthwhile to distinguish, say, DIV and
DIV†, e.g., computations in DIV can be run on platforms that offer
limited heap storage. Nevertheless, in many cases, a programmer
may not wish to distinguish between M and M† at all—although the
language insists on at least distinguishing PURE and PURE†. Thus,
a simpler lattice, with nearly the same expressive power, would use
just the †-versions of each effect and PURE.

The signature of the forgetful coercion from STATE† to DIV† is
shown below—the coercion from TotST† to PURE† is identical.

1 assume val forget ST: #a:Type→#b:(a→Type)
2 →#req:(a→heap→Type)
3 →#ens:(x:a→heap→b x→heap→Type)
4 → f:(x:a→ST† (b x) (req x) (ens x) (modifies {}))
5 {∀ x h h’. req x h =⇒ req x h’}
6 →Tot (x:a→Div† (b x) (requires (∀ h. req x h))
7 (ensures (fun (y:b x)→∃h0 h1. ens x h0 y h1)))

The coercion forget ST is a primitive in the language (as indi-
cated by the assume keyword). Given a stateful function f, with
pre-condition req, post-condition ens, and which does not mutate
any existing heap reference (modifies {}); if the pre-condition req is
insensitive to the contents of the heap (line 5), forget ST coerces f
to Div†, turning its pre- and post-condition into pure, heap-invariant
formulae. The intuition is that if f can safely be called in any initial
heap, then it cannot read, write or free any existing reference (since,
from the signatures of those primitives, doing so requires proving
that the current heap has those references). On the other hand, f
may allocate and use references internally, but the post-condition on
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line 7 hides all properties of the heap that results after the execution
of f—so, the freshly allocated state (if any) is inaccessible to the
caller. Taking these two properties together, we may as well just
forget about f’s use of the heap, since a caller can never observe it.
However, we cannot forget f’s pre- and post-condition (req and ens)
altogether, since f may require some non-heap-related property of
its argument (e.g., that x > 0), and provide some similar non-heap-
related property of its result. So, in the returned function, we retain
heap-invariant versions of req and ens,

Forgetting effects, in action. Our implementation of Quicksort
in §3.4 is compact, but space inefficient. We would prefer to use
an imperative, in-place quicksort on arrays, sorting an immutable
sequence by copying it first to an array (an abstract type, logically
equivalent to a mutable reference holding a sequence), sorting it
efficiently, and then copying back. Despite the linear space overhead
this is still a win (by at least a logarithmic factor) over the purely
functional code. Using forget ST, we can hide this optimization as
an implementation detail, as shown below.

val qsort arr: #a:Type→ f:tot ord a→x:array a→ST unit
(requires (fun h→has h x))
(ensures (fun h0 u h1→has h1 x ∧ Seq.sorted f (sel h1 x)

∧ permutation a (sel h0 x) (sel h1 x)))
(modifies {x})

val qsort seq : #a:Type→ f:tot ord a→x:seq a→ST (seq a)
(requires (fun h→True))
(ensures (fun h0 y h1→Seq.sorted f y ∧ permutation a x y))
(modifies {})

let qsort seq f x =
let x ar = Array.of seq x in qsort arr f x ar;
let res = to seq x ar in Array.free x ar; res

val qsort: a:Type→ f:tot ord a→s1:seq a
→Dv (s2:seq a{Seq.sorted f s2 ∧ permutation a s1 s2})

let qsort f x = forget ST (qsort seq f) x

Using forget ST, the top-level function calls qsort seq, but has
a stateless specification that reflects the functional correctness
specification of the stateful function qsort arr.

Haskell’s runST Finally, it is interesting to compare this solution
with runST :: (∀s. ST s a)→a (Launchbury and Peyton Jones 1994),
which, according to the Haskell documentation, returns “the value
computed by a state transformer computation. The forall ensures
that the internal state used by the ST computation is inaccessible to
the rest of the program.”

Aside from F?’s ability to specify and verify functional cor-
rectness, our forget ST is similar in spirit to runST. In F?, we can
quantify over the initial heap in the logic, rather than using higher-
rank polymorphism in the types. In Haskell, the types prevent the
computation from returning an STRef s a, whereas in F?, a local
reference can be returned by a Div† computation, but such a refer-
ence will be inaccessible to the caller (since the caller can no longer
prove that the heap has that reference). Additionally, in F?, one
can prove that a computation is conditionally in Div†. For example,
if x then r := 0 else () is observationally stateless if x=false.

5. A new implementation of F?

Recall our five main goals for the redesign of F? (Section 1). The
previous sections describe in some detail how F? now enables
proving and programming, with pure and impure code. Underlying
the usability of the language are three additional goals: (1) an
expressive and efficient encoding of F?’s higher-order dependently
typed logic into a simpler first-order logic provided by an SMT
solver; (2) type-and-effect inference; and (3) interoperability with
existing ML dialects on multiple platforms.

Given the space constraints of this format, we provide just a
brief overview of F?’s SMT encoding and type inference algorithm
(leaving a more detailed presentation as future work), and then report
on the engineering of our implementation.

5.1 Type-and-effect inference and SMT encoding
Without good type inference, F? would be unusable. As the reader
may have guessed from the examples, to a first approximation, F?

provides type inference based on higher-order unification. Consider
the fragment forget ST (qsort seq f) from the example in §4.3—
type inference computes instantiations for the type-level functions
b, req and ens. However, classical, higher-order unification, as
implemented (to varying extents) in many other proof assistants,
must be adapted for use in F?. There are two complications which
our implementation addresses. First, type inference and effect
inference are interleaved, since associated with each of our effects
is a predicate transformer, whose structure depends on the inferred
types. Second, F? has refinement subtyping: as is well known,
unification and subtyping do not always mix well.

The typical strategy for dealing with subtyping in a unification-
based type inference algorithm is to resort to bidirectional type-
checking (Pierce and Turner 2000). However, after using bidirec-
tional type-checking for five years, F? has moved on to a style where
type inference gathers all (higher-order) unification and subtyping
constraints from a term, and then solves these constraints together
at the top-level. Solving constraints with a holistic view of the term
produces much better results, and is robust to small, semantics-
preserving code transformations (e.g., η-expansion, let-binding, and
argument re-ordering), whereas local type-inference is not always
as robust. This style of constraint solving is feasible because, in our
setting, refinements of the same underlying type form a full lattice
(where the join and meet are respectively logical disjunction and
conjunction).

A solution to a set of typing constraints produces a logical guard
φ :Type which, at the top level, may for instance reflect an implica-
tion between user-provided annotations and the inferred type and
logical specification of a term. To prove that φ is valid, we encode
it as an SMT theory. Our encoding is essentially a deep embed-
ding of the syntax of F? terms, types and kinds into SMT terms,
with interpretation functions giving logical meaning to the deeply-
embedded terms in the SMT solver’s logic. On top of this basic deep
embedding structure, we implement several optimizations, such as
shallow embeddings of commonly used connectives like ∀ and ∧ ,
by essentially inlining the interpretation functions on certain deeply
embedded terms. The other main optimization is in the encoding of
recursive functions and types—we implement various strategies to
control the number of unrollings of recursively defined terms and
types that the solver is allowed to explore.

If the SMT solver fails to prove a goal, we translate the returned
counterexample model into a meaningful error message for the user,
who will typically try to break up the goal into smaller lemmas. At
worst, if the SMT solver remains unsuccessful, the user still has
the option of manually providing a constructive proof. On the other
hand, if the solver succeeds, there remains the question of whether it
(and, perhaps more importantly, our encoding) can be trusted — we
are exploring a certification pipeline to address this issue, building
on our prior work on self-certification by proof witnesses from SMT
solvers (Armand et al. 2011).

5.2 Engineering the F? compiler
F? is an open source project hosted at https://github.com/

FStarLang. The compiler is itself programmed in about 21,000
lines of F? code. Most of the complexity of the compiler lies in the
modules implementing type inference and SMT encoding. In com-
parison to prior versions, our new implementation is significantly
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Example Verification Goal Effects F? LOC Time(s)
RB tree Insert correctness PURE 327 10.4
Quicksort Correctness PURE 90 6.6
Counters Stateful invarianta STATE 72 5.2
Wysteria Securityb STATE 179 3.6
ACL Securityc ALL 232 5.2
Encrypt Securityd ALL 270 5.5
λ→

e
Type
Soundness

PURE 1708 186.5
λω PURE 1413 22.6
System Fω PURE 2055 55.9
λ→

f W. Normalization PURE 260 5.2

a Created counters return even values, while hiding their local state
b An EDSL encoding a type system for secure multi-party computations,
including Yao’s Millionaires’ Problem (Rastogi et al. 2014)
c File access control with dynamic access granting/revocation
d Secrecy of multi-key symmetric encryption scheme
e Five variants with different binder (named, xde Bruijn), substitution
(point, parallel), and reduction (CBV, strong) schemes. Stats are cumulative.
f Hereditary substitutions with de Bruijn indices

Figure 2. A sampling of verified F? examples

less complex (the prior version had bloated to over 100,000 lines of
F# code), even though it implements a more expressive language.

The compiler makes extensive use of effects (e.g., unification
is imperative and exceptions are used heavily throughout), and is
written idiomatically in a shared subset of F? and F#. We have
yet to prove any deep properties about our implementation, aside
from standard type safety — yet we are now well-positioned to start
verifying it. Regardless, our experience developing the compiler is
good validation that our new design, despite the addition of effects,
retains the flavor of programming in ML at a non-trivial scale.

While we rely heavily on F# tools (such as the Visual Studio
IDE) and external libraries (the .NET platform) for bootstrapping,
we also offer a new F? standard library with support for lists, strings,
sequences, arrays, sets, bytes, basic networking, limited I/O, and
some cryptographic primitives. In many cases, these libraries are
verified, providing a suite of lemmas for programmers to use in
other developments.

The compiler is designed to support several backends. Currently,
our main backend targets OCaml, as it requires little compilation
effort and is able to produce binaries for many platforms. We rely
on the OCaml Batteries package to efficiently implement the F?

standard library. Calls to the F? library get rewritten by each backend
to take advantage of the native representations and library functions
available in the target language. To bootstrap, we first build the
compiler using F#, then we run the generated binary on its own
source files, emitting OCaml code through the backend, which we
finally run through the OCaml compiler, targeting several platforms.
With this approach, we offer binary packages compiled from OCaml
for Windows, Linux and MacOS from the F? homepage.

In addition to the 21,000 lines of compiler source code in F?,
our repository also contains more than 10,000 lines of verified
example F? code as part of our regression suite. While this is already
a significant figure, our current F? examples do not achieve the scale
of the most impressive applications of its prior versions (Bhargavan
et al. 2013; Fournet et al. 2013); indeed, there remains tens of
thousands of lines of old F? code to port forward. Figure 2 shows a
table of significant F? examples, including the verification goal, the
effects used in the program, the line count (including comments),
and the verification time on a workstation equipped with a Xeon
E5-1620 CPU at 3.6GHz and 16GB of RAM.

c ::= () | 0 | 1 | −1 | . . . | ` | ! | := | sel | upd
v ::= c | λx:t.e | let rec( f d :t) x = e
e ::= x | v | e1 e2 | if0 e then e1 else e2
T ::= unit | int | ref int | heap | true | false | and | or | not
| impl | forall | forallk | eq | eqk

t,φ ::= α | T | x : t1→M t2 φ | λα:k. t | λx:t. t ′ | t t ′ | t e
k ::= Type | α:k→ k′ | x:t→ k′

Figure 3. Syntax of µF?

6. Metatheory
This section describes the formalization of µF?, a small core
calculus capturing the essence of F?. µF? features dependent
types and kinds, type operators, subtyping, sub-kinding, semantic
termination checking, and statically-allocated first-order state. The
µF? calculus only has a fixed two-point lattice of effects with
only PURE and ALL, a single effect combining state and non-
termination, at the top. Our main results are partial correctness
for the program logic for ALL computations; weak normalization
for the PURE fragment; and total correctness of the logic for PURE
computations. The online appendix contains all the definitions and
proofs. We also include online the comprehensive formal definitions
of F? corresponding to the system we have implemented—however,
its metatheory has not yet been fully studied.

Figure 3 presents the syntax of µF?. Constants (c) include
unit, integers, memory locations (`), operations for reading (!)
and updating memory (:=) as well as corresponding symbols (sel
and upd) for reasoning about memory at the logical level. Beyond
constants and the lambda calculus, expressions include a recursion
construct let rec( f d :t) x = e, where the optional metric d is an
arbitrary pure function used for termination checking. We also
include a form for testing whether an integer is zero. Types (t)
include dependent function types (x:t1 → M t2 φ ) enhanced with
predicate transformer specifications (φ ), type variables (α), lambdas
for type-indexed (λα:k. t) and expression-indexed type operators
(λx:t. t ′), as well as the corresponding application forms (t t ′ and
t e). The main use of type-level lambdas and application is for
representing the predicate transformers (φ ) in function specifications.
For the same purpose we include typed classical logical connectives
as type constants (T ); for instance ∀x:t.φ is represented as the
type “forall (λx:t.φ)”, where forall:α:Type→ (α →Type)→Type.
Constructively, the→ type is for universal quantification, as usual.

We give µF? expressions a standard CBV operational seman-
tics. Reduction has the form (H,e)→ (H ′,e′), for heaps H and H ′
mapping locations to integers. We additionally give a liberal reduc-
tion semantics to µF? types (t t ′) that includes CBV and CBN,
and that also evaluates pure expressions (e→ e′). The type system
considers types up to conversion.

Figure 4 lists all the expression typing rules of µF? that have not
already been shown earlier (except the trivial rule for typing con-
stants). The rules for variables and λ -abstractions are unsurprising.
In each case, the expression has no immediate side-effects; we thus
use Tot to mark these expressions as unconditionally pure.

Rule (T-App) is more interesting: first, the effect M of the
function application is an upper-bound on the effects of computing
the function e1 and its argument e2 as well as on the effect of
executing the function body. Effects can be freely lifted from
PURE to ALL using the (S-Comp) subtyping rule in Figure 5.
Then, while the first two preconditions of (T-App) are standard,
via the third one, Γ ` t ′[e2/x] : Type, we ensure that if x appears in
t ′ then e2 is pure. This restriction on dependent type application is
necessary for soundness and is much more liberal than the value-
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(T-Var)
Γ(x) = t Γ ` t : Type

Γ ` x : Tot t

(T-Abs)
Γ ` t : Type Γ,x:t ` e : M t φ

Γ ` λx:t.e : Tot (x:t→M t φ)

(T-App)
Γ ` e1 : M (x:t→M t ′ φ) φ1

Γ ` e2 : M t φ2 Γ ` t ′[e2/x] : Type
Γ ` e1 e2 : M (t ′[e2/x]) (bindM φ1 (λ f .bindM φ2 (λx.φ)))

(T-If0)
Γ ` e0 : M int φ0 Γ ` e1 : M t φ1 Γ ` e2 : M t φ2

Γ ` if0 e0 then e1 else e2 : M t (iteM φ0 φ1 φ2)

(T-Sub)

Γ ` e : M′ t ′ φ ′ Γ `M′ t ′ φ ′ <: M t φ ⇐ φ ′′ Γ |= φ ′′

Γ ` e : M t φ

Figure 4. Remaining typing rules of µF?

(Sub-Fun) Γ ` t ′ <: t⇐ φ ′′ Γ,x:t ′ `M s φ <: M′ s′ φ ′⇐ φ ′′′

Γ ` (x:t→M s φ)<: (x:t ′→M′ s′ φ ′)⇐ φ ′′∧M′ ∀x:t ′.φ ′′′

(Sub-Conv)
Γ |= t1 = t2 Γ ` t2 : Type

Γ ` t1 <: t2⇐ true

(S-Comp)
M 6M′ Γ ` t <: t ′⇐ φ ′′ Γ ` φ ′ : K′M(t ′)

Γ `M t φ <: M′ t ′ φ ′⇐ φ ′′∧down′M(φ ′⇒′M liftM′
M φ)

Figure 5. Subtyping rules of µF?

dependency restriction (and corresponding requirement of A-normal
form (Flanagan et al. 1993)) in old F? and similar systems, e.g.,
liquid types. Instead of requiring programs to be A-normal, we
monadically sequence their predicate transformers in the conclusion.

Rule (T-If0) connects the predicate transformers using an iteM
operator, which is defined as follows for our two effects:

itePURE φ0 φ1 φ2 post=
bindPURE φ0 (λ i. i=0⇒ φ1 post ∧ i6=0⇒ φ2 post)

iteALL φ0 φ1 φ2 post=
bindALL φ0 (λ i h. i=0⇒ φ1 post h ∧ i 6=0⇒ φ2 post h)

Subsumption (T-Sub) connects expression typing to the subtyp-
ing judgment for computations, which has the form Γ `M′ t ′ φ ′ <:
M t φ ⇐ φ ′′. The formula φ ′′ gathers the necessary conditions on
subtyping and is required to be logically valid in environment Γ.
This is captured by a separate logical validity judgment Γ |= φ ′′

that gives a semantics to the typed logical constants and equates
types and pure expressions up to convertibility—this is the judgment
that our implementation encodes in an SMT solver. The subtyping
judgment for computations only has the (S-Comp) rule, listed in
Figure 5; it allows lifting a PURE computation to the ALL effect,
strengthening the predicate transformer, and weakening the type
using a mutually inductively defined judgment Γ ` t <: t ′⇐ φ . This
judgment includes a structural rule (Sub-Fun) and a rule for type
conversion via the logical validity judgment (Sub-Conv).

Meta-theorems We prove the following partial correctness theo-
rem for ALL computations stating that a well-typed ALL expression
is either a value that satisfies all post-conditions consistent with its
predicate transformer, or it steps to another well-typed ALL expres-
sion. For PURE expressions, we prove the analogous property, but
in the total correctness sense.

Theorem 1 (Partial Correctness of ALL). If · ` e : ALL t φ then for
all p and H s.t. · ` p : PostALL(t) and · |= φ p asHeap(H), either

e is a value and · |= p e asHeap(H), or (H,e)→ (H ′,e′) such that
· ` e′ : ALL t φ ′ and · ` φ ′ p asHeap(H ′).

Theorem 2 (Total Correctness of PURE). If · ` e : PURE t φ then
for all p s.t. · ` p : PostPURE(t) and · |= φ p, we have e→∗ v such
that v is a value, and · |= p v.

Our total correctness result relies on a weak normalization
theorem for PURE terms—this is proven using a well-founded
induction on the ambient, partial ordering on terms by exhibiting an
accessibility predicate. The theorem only considers the reduction of
terms in a consistent context (i.e., Γ |= false is not derivable), and, as
such, excludes strong reduction under binders as well. Additionally,
we require the validity judgment to be consistent with respect to the
ordering.

Theorem 3 (Weak normalization of PURE). If Γ is consistent,
Γ ` e : PURE t φ , and ∃p.Γ |= φ p; then e is weakly normalizing.

7. Related work
Integrating dependent types within a full-fledged, effectful program-
ming language is a long-standing goal. An early effort in pursuit
of this agenda was Cayenne (Augustsson 1998) which integrated
dependent types within a Haskell-like language. Cayenne intention-
ally permitted the use of non-terminating code within types, making
it inconsistent as a logic. Nevertheless, Cayenne was able to check
many useful program properties statically. Subsequent efforts aim
to preserve the consistency of the logic in the presence of effects
including but not limited to non-termination. Unsurprisingly, there
are three main strands:
Clean-slate designs We have compared with Trellys/Zombie and
Aura. Another notable clean-slate design is Idris (Brady 2013),
which provide both non-termination and an elegant style of algebraic
effects. A syntactic termination check is also provided.
Adding dependency to an effectful language This camp in-
cludes the predecessors of F?, notably Fine (Swamy et al. 2010),
F7 (Bhargavan et al. 2010), and F5 (Backes et al. 2014), all of which
add value-dependent types to a base ML-like language. We have
already discussed liquid types. A recent variation by Vazou et al.
(2014) adds liquid types to Haskell, a call-by-name language—in
this setting, non-values may appear in refinements, but they are still
uninterpreted. For soundness, Liquid Haskell provides a termination
check, which is less expressive than ours (being based only on the
integer ordering). Liquid Haskell does not have any effects.
Adding effects to a type-theory based proof assistant Nanevski
et al. (2008) develop Hoare type theory (HTT) as a way of extending
Coq with effects. The strategy there is to provide an axiomatic
extension of Coq with a single catch-all monad (like monadic-F?,
which builds on HTT) in which to encapsulate imperative code.
Tools based on HTT have been developed, notably Ynot (Chlipala
et al. 2009). This approach is attractive in that one retains all the
tools for specification and interactive proving from Coq. On the
downside, one also inherits Coq’s limitations, e.g., the syntactic
termination check and lack of SMT-based automation.
Non-syntactic termination checks Most dependent type theories
rely crucially on normalization for consistency. Weak normalization
is usually sufficient, as is the case in Coq, which is not normalizing
under call-by-value; Pure F? is also only weakly normalizing—
strong reductions (under binders) are not included. Coq’s syntactic
termination check is known to be brittle. So, many researchers have
been investigating more semantic approaches to termination in type
theories. Agda (which only includes pure functions) offers two non-
syntactic termination checkers. The first one is based on fœtus (Abel
1998), and tries to discover a suitable lexicographic ordering on the
arguments of mutually-defined functions automatically. Contrary
to fœtus, our termination checker does not aim to find an ordering
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automatically (although well-chosen defaults mean that the user
often has to provide no annotation); nonetheless, our check is far
more flexible, since it is not restricted to a structural decreasing of
arguments, but the decreasing of a measure applied to the arguments.
The second one is based on sized types (Abel 2007; Barthe et al.
2004), where the size on types approximates the depth of terms.
In contrast, in F?, the measures are defined by the user and are
first-class citizens of the language and can be reasoned about using
all its reasoning machinery. In both Agda and Coq, one can also
instrument functions with accessibility predicates, independently
proving that they are well-founded (Bove 2001). We can see F? as
having a single ambient accessibility predicate on all terms, that
can be augmented currently only by adding axioms. Allowing user-
defined well-founded orderings while retaining good automation
seems non-trivial and we leave it for future work.
Semantic model for higher-order refinements Barthe et.
al. (2015) recently introduced a relational type system with higher-
order refinements and showed this system sound with respect to a
denotational semantics. The authors suggest that old F? and other
refinement based languages would have a hard time soundly sup-
porting semantic subtyping, because the logic does not embed any
guard against non-terminating logical symbols. The non-termination
monad Barthe et. al. use to avoid logical inconsistency in their
setting is in a sense similar to our Tot effect.
SMT-based program verifiers Software verification frameworks,
such as Why3 (Filliâtre et al. 2014) and Dafny (Leino 2013), also use
SMT solvers to verify the logical correctness of first-order programs.
Unlike us, they do not rely on dependent types. F?’s ability to reason
about definitions by computing with an SMT solver is related to the
work of Amin et al. (2014)—however, many of the details differ, e.g.,
we provide a means for the user to control the number of unrollings
of a function, which their approach lacks.

Looking back, looking ahead Our redesign was motivated primar-
ily by our desire to use F? to build and verify more complex software
(a high-efficiency implementation of TLS is high among our prior-
ities). Old, value-dependent F? had become too cumbersome for
the task. Moving towards full dependency, using a type-and-effect
system for consistency, results in a system that is (arguably) more
uniform, without ad hoc restrictions based on kinds or qualifiers, but
still not substantially more complex theoretically. Ultimately, we
find that new F? is more expressive and pleasant for programming
and proving—particularly when backed by practical type-and-effect
inference. Value dependency has served us well—it is technically
simple, and many of us have gotten good mileage out of it, using it
to build several useful verified artifacts. But its time is up.
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