
Automating Separation Logic Reasoning

• Separation Logic is a bad fit for SMT solvers
• Predicates are higher-order

• Predicates are often recursive

• Relies on Associative-Commutative (AC) reasoning

P ★ Q ★ R ֞ R ★ P ★ Q

• Automation through a cooperation between SMT solving and custom
separation logic decision procedures

1

A Syntax-Directed Frame Rule

• Problem: Applications of the frame rule are non-deterministic

• Solution: Deterministically apply framing at the “leaf” only, during
function calls

Γ ⊢ 𝑣 ∶ 𝑎. Γ ⊢ 𝑓: 𝑎 → 𝑄 𝑡 {𝑅}

Γ ⊢ 𝑓 𝑣: ? 𝑃 ⋆ 𝑄 𝑡 {? 𝑃 ⋆ 𝑅}

Γ ⊢ 𝑐 ∶ 𝑄 𝑡 {𝑅}

Γ ⊢ 𝑐 ∶ ? 𝑃 ⋆ 𝑄 𝑡 {? 𝑃 ⋆ 𝑅}

2

Automating Frame Inference: An Example

• Observation: Separation logic VCs can be seen as AC-unification problems
for instance, ptr r1 ⋆ ptr r2 ֞ ?F1 ⋆ ptr r1

• Observation: A scheduling of equivalences where each problem contains at
most one metavariable exists

ptr r1 ⋆ ptr r2 ֞ ?F1 ⋆ ptr r1,

?F1 ⋆ ptr r1 ֞ ?F2 ⋆ ptr r1

?F2 ⋆ ptr r1 ֞ ptr r1 ⋆ ptr r2

val write (r:ref a) (x:a) : Steel unit (ptr r) (ptr r)
let two_writes (r1 r2:ref int) : Steel unit (ptr r1 ⋆ ptr r2) (ptr r1 ⋆ ptr r2)

= write r1 0;
write r1 1

// : {?F1 ⋆ ptr r1} unit {?F1 ⋆ ptr r1}
// : {?F2 ⋆ ptr r1} unit {?F2 ⋆ ptr r1}

3

Solving Frame Metavariables

We reduced the problem to solving equivalences of the shape
?F ⋆ P1 ⋆ P2 ֞ Q1 ⋆ Q2

We provide a decision procedure for these problems as an F* tactic,
which:

• Supports existentially quantified ghost variables

• Can query the SMT solver for equalities on subterms

• Sacrifices completeness for speed and user interaction

4

Steel Example: Spinlocks

5

val lock (p:slprop) : Type

val acquire (l:lock p) : Steel unit emp (𝜆 _ → p)

val release (l:lock p) : Steel unit p (𝜆 _ → emp)

Transferring ownership

Transferring ownership back

Initially, no ownership

Steel Example: Invariants (“Ghost locks”)

6

val inv (p:slprop) : Type

Invariants can be accessed inside atomic commands

This enables lock-free shared-memory concurrency

Composition of a physical action and a finite number of ghost operations

Steel Example: Michael-Scott 2-lock queues

7

• The shape of the queue is captured by an invariant
• The dequeuer and the enqueuer both have a lock on the head and tail pointers

respectively

Steel Example: Message-Passing Concurrency

8

val chan : Type
val endpoint (ch:chan) (p:prot) : slprop

val new (p:prot) : Steel chan emp (𝜆c → endpoint c p ★ endpoint c (dual p))

val send (c:chan{is_send_next next}) (x:msg_t next) :
Steel unit (endpoint c next) (𝜆_ → endpoint c (step next x))

val recv …
val close …

Returns a new channel

Returns permissions for two parties to
use the new channel for protocol p

We initially are at the stage next of the
protocol on channel c

At this stage of the protocol, we must send a message
The message x is compatible with the
current state of the protocol

After executing send, we advanced the
state of the protocol by sending x

Steel Example: PingPong Protocol

9

let pingpong : prot =
let x = Protocol.send int in
let y = Protocol.recv (y:int{y > x}) in
Protocol.done

let client (c:chan) : Steel unit (endpoint c pingpong) (𝜆_ → emp)

= send c 17;
let y = recv c in
assert (y > 17);
close ()

Statically checked assert, erased at runtime

Separating Separation and First-Order Logic

• We associate to each separation logic predicate a self-framing selector
For example, a reference’s selector is the value it contains

• First-order logic predicates about selectors can be discharged by SMT

val swap (p1 p2:ref int) : Steel unit (ptr p1 ★ ptr p2) (ptr p1 ★ ptr p2)
(requires λ _→ ⊤)

(ensures λ s0 _ s1 → s0.[p1] == s1.[p2] /\ s0.[p2] == s1.[p1])

10

Steel Example: Binary Trees
type node a = {data : a; left : t a; right: t a}
and t a = ref (node a)

val tree (ptr:t a) : slprop

let rec height (ptr:t a) : Steel int (tree ptr) (𝜆 _ → tree ptr)

(requires 𝜆_ → ⊤)

(ensures 𝜆s0 x s1 → s0.[ptr] == s1.[ptr] ∧ Spec.height s0.[ptr] == x)

= if is_null ptr then (unroll_leaf ptr; 0) else (
let node = unroll_tree ptr in
let hleft = height node.left in
let hright = height node.right in roll_tree ptr node.left node.right;
if hleft > hright then (hleft + 1) else (hright + 1))

11

Expects a tree-shaped structure

Returns a tree-shaped structure

The contents of the tree are unchanged

Functional correctness

An abstract predicate capturing a tree-shaped structure

Steel a p q: a computation that has
return type a, under the
precondition p, and with the
postcondition q

Steel Example: AVL Trees
type node a = {data : a; left : t a; right: t a}
and t a = ref (node a)

val tree (ptr:t a) : slprop

val insert_avl (cmp:Spec.cmp a) (ptr:t a) (v:a)
: Steel (t a) (tree ptr) (𝜆 ptr’ → tree ptr’)

(requires 𝜆 s → Spec.is_avl cmp s.[ptr])

(ensures 𝜆s0 ptr’ s1 → Spec.is_avl cmp s1.[ptr] ∧

s1.[ptr’] == Spec.insert_avl cmp s0.[ptr] v)

12

The AVL invariant is preserved

Functional correctness

Same abstract predicate as before

