Thanks to Jonathan Protzenko and
Chris Hawblitzel for these slides.

Errors are mine

A
Nik Swamy, OPLSS 2019

f “ | J?

EVERCRYPT

oAU

lot
St
abOUt or O say
Oc
Le CUri
CtU/’es 2’ miTLS 1.3
record layer H key derivationﬁ Hgfﬁ:ﬁ?ﬂgarsmg &
" EverCrypt EverParse non-malleability
side-
chanfel @ @
resisgance
HACL™ — ValeCrypt /Oz‘
(Poly1305, Curve25519, T o R) Z
Chacha20, etc.) é O&
lo 20p. "
’ @Cf Z‘,O
today’s U %‘@
+ memory safety, functi#hal correctness $ 7 Ky
focus 0o

A COLLECTION OF SEVERAL IMPLEMENTATIONS

\N h at i S a ALGORITHMS (EXHAUSTIVE) (MULTIPLEXING)

cryptographic
provider?

APIS GROUPED BY FAMILY EASY-TO-USE API
(AGILITY) (CPU AUTO-DETECTION)

An essential piece of software

A cryptographic provider is useful beyond secure communications, e.g.
 file encryption

* secure enclaves

e document signatures

e cryptocurrencies

* any modern piece of software

What is a cryptographic provider?

enSSL

ptography and SSL/TLS Toolkit
(libcrypto)

arm

7
ndows Cryptographic Primitives Libra
.tnlgurpuratmn
EVERCRYPT Speemey F

berypt.dll beryptprimitrves, bdaplgin.ax bdechange
dll £

MBED

A brief reminder: why veritfy

crypto:

oraphic al,

oorithms?

AES-GCM

Evaluate polynomials in this field to get an authentication code! (see also:
Poly1305)

GHASH (AES-GCM):

- p =218 (g=2,n=128)
- P=xMP +x"+xt+x+1

“the math”

Distillineg the math for implementors

GCM
24 Decryption

The authenticated dec
the hash step and enc

The tag 7" that is comy
the ciphertext C. Ifthi
Otherwise, the special

25 Multiplication

The multiplication op
specification. This def
in GCM. Section 3 pro
tion 4 describes some

Each element is a vec
bit is Xo, and the rig|
R = 11100001 [j0'* , a
argument one bit to t!
1<i<127and Wy

3 The Field G}

A finite field is defin
the basic algebraic prc
assoclativity, and dist
element. Inapolynom

GCM

The highest term of /
to add the lowest tern
coefficients and addin
operations, this can be
if X,z = O then
Y rightshift(X
else
Y« rightshift(X
end if

where R is the elemen
all zeros.

In order to multiply tv
use the method descril
and Y as inputs and re

Z~0V—X
fori = 0to 127 do
if Y, = 1 then
Z—Z&YV
end if
Vev.p
end for
return Z

In this algorithm, V' rw
to the powers of a, mo
defined in terms of fiel

4 Implementati

Implementing GCM is
of the underlying bloc!
provide an overview o
tion of the multiplicati

The number of block «
equal to [p/128] + 1
tional block cipher im

24 Decryption

GCM

which is 16 by
dependent an¢
conserve mem
total of 8,192 b

With a small i
considerably, ¢
an arbitrary el

This equation
Z~0
fori = I5to
22
Zw—Z-F
end for
Zw—Z&(x
retum 7

Note that i loc
power of P*
arbitrary elem
product as

The expressiot
element z to th
be computed 1
using a table, a
products, so th
be combined.

The table M, 1
112 bits equal
Itis not key-di
into four-bit el

The performai
implementatio

GCM

GCM

4.1 Software GCM

4.1

Software

4.1 Software

GCM 42 Hardware

Algorithm 3 Computes the table Mg given an element H € GF(2'*)
[}

P

M (0] — 0"
retun M

4.2 Hardware

I this section, we outline a pipelined hardware design, which is illustrated in Figure 3. The trape-
z0ids at the top and bottom denote inputs and outputs, respectively. The rhomboids denote the
points at which data paths are switched. There are three inputs: data that is authenticated-only
(AAD), the IV, and the plaintext. The IV is fed into the increment function, which then outputs
successive counter values that are fed into the block cipher pipeline, shown as E in the fig-
ure. The first encrypted counter is sent to encrypt the GHASH output (path 3), then the output
of that function is switched so that the other encrypted counters are exored with the plaintext
to form the ciphertext (path 2). The authenticated-only data is fed into the GHASH function
(path 1), then the input of that function is switched to the ciphertext (path 2). After all of the
data input to GHASH has been processed, the output of that function is exored with the fist es
crypted counter, producing the authentication tag. In this design, the tag-generating pipeline and
ciphertext- g pipelines are independent, except for the tag-encryption step. These two
pipelines can be made completely independent by adding another AES engine dedicated to the
encryption of the GHASH output

Binary Galois field multiplication is especially suitable for hardware implementations. Many im-
plementation strategies are discussed in the literature. Parr [11] summarizes the efficiency of var-
ious finite field multiplication methods for GF(29) as follows:

GCM

Figure 3: A hardware implementation of G

circuit.

42 Hardware

e /

2
-

i ciphertext ;

he algorithm

Writing the actual code

$ivp), $counter
$const

$key),$in0
$end@
$Xip), $X1i

$const),$Ii
$key) , $key
$Xip
$key

$Ii,$Xi, $X1i

A long way from quotienting a ring
by an ideal

$end0
$in0, $end0O

$end0

$end0O

$inp),$Z3
$inp),$in0d
$inp), $20
$inp,$len), $end0@
$inp), $Z1
$len
$ret, $ret
$inp),$Z2
$Ii,%$Z3,%$Z3
$inp), $T2
$Ii,$20,%2Z0
$inp), $Hkey
$1i,%$71,%71
$Z0
$I1i,$Z22,%$Z2
$Z1
$Ii,$T2,%$T2

“the reality” e

$T2
$Hkey

$inout® $out
$inoutl $out

What could possibly go

wrong?

Many bugs in Curve25519 implementations

(C and assembly)

agl / curve25519-donna

Ed25519 amd64 bug

[0] gistfilel.md

(® Watch

<> Code Issues 2 Pull requests 7 Projects 0 Wiki Ip~isbes

Correct bounds in 32-bit code.

The 32-bit code was illustrative of the tricks used in the original
curve25519 paper rather than rigorous. However, it has proven quite
popular.

This change fixes an issue that Robert Ransom found where outputs between
27255-19 and 27255-1 weren't correctly reduced in fcontract. This
appears to leak a small fraction of a bit of security of private keys.

Additionally, the code has been cleaned up to reflect the real-world
needs. The refl® code also exists for 32-bit, generic C but is somewhat
slower and objections around the lack of ghasm availibility have been
raised.

pmaser 013 CUrve25519-donna

. agl committed on Jun 9, 2014 1 parent

sv pack25519(u8 xo
{

int i,j,b;

gf m,t;

FOR(i,16) t[il=n

car25519(t);

car25519(t);
car25519(t);

FOR(j,2) {
m[@]=t[@]-Oxff
for(i=1;i<15;1i

m[i]l=t[i]-0x
m[i-1]&=0xff
¥
m[15]=t[15]-@x
b=(m[15]>>16)&
m[15]&=0xffff;
sel25519(t,m,1-b);

}

FOR(1i,16) {
o[2xi]=t[i]&@xfT;
o[2xi+1]=t[i]>>8;

}

}

While visiting 30c3, | attended the You-broke-the-Internet workshop on NaCl. N a C | (a S I I I)

One thing mentioned in the talk was that auditing crypto code is a lot of work, and that this is one of the reasons why
Ed25519 isn't included in NaCl yet (they promised a version including it for 2014). The speakers mentioned a bug in the
amd64 assembly implementation of Ed25519 as an example of a bug that can only be found by auditing, not by
randomized tests. This bug is caused by a carry being added in the wrong place, but since that carry is usually zero, the
bug is hard to fint (occurs with probability 2*{-60} or so).

The TweetNaCl paper briefly mentions this bug as well:

Partial audits have revealed a bug in this software (r1 += @ + carry shouldbe r2 += @ + carry in
amd64-64-24k) that would not be caught by random tests; this illustrates the importance of audits.

Searching for this string in the SUPERCOP source code turns up four matches:

crypto_scalarmult\curve25519\amd64-64\fe25519 mul.s
crypto_scalarmult\curve25519\amd64-64\fe25519_square.s
crypto_sign\ed25519\amd64-64-24k\fe25519_mul.s
crypto_sign\ed25519\amd64-64-24k\fe25519_square.s

So it apprears like the amd64-64 implementation of both Curve25519 and Ed25519 is affected.

It seems difficult to exploit this when used for key generation or signing since the attacker cannot influence the data. Key-
exchange and signature verification might be a problem.

TweetNaC|

This bug is triggered when the last limb n[15] of the input argument n of
this function is greater or equal than @xffff . In these cases the result of
the scalar multiplication is not reduced as expected resulting in a wrong
packed value. This code can be fixed simply by replacing m[15]&=0xffff;

by m[14]&=0xffff; .

Raw

3 Bugs in OpenSSL implementation
of Poly1305 last year

[[openssl-dev] [openssl.org #4439] poly1305-x86.pl
OpenSSL Security Advisory [18 Nov 2016] produces incorrect output

“These produce wrong results. The first example does so only on 32 bit,
the other three also on 64 bit.”

“1 believe this affects both the SSE2 and AVX2 code. It does seem to be
dependent on this input pattern.”

“I'm probably going to write something to generate random inputs and stress
all your other poly1305 code paths against a reference implementation.”

recommend doing the same in your own test harness, to make sure there 12
Iar‘en't others of these bugs lurking around.

Implementation bug in AES-GCM

The fragility of AES-GCM authentication algorithm

Shay Gueron'?, Vlad Krasnov”

! Department of Mathematics, University of Haifa, Israel
? Intel Corporation, Israel Development Center, Haifa, Israel

March 15, 2013

Abstract. A new implementation of the GHASH function has been recently
committed to a Git version of OpenSSL, to speed up AES-GCM. We identified
a bug in that implementation, and made sure it was quickly fixed before
trickling into an official OpenSSL trunk. Here, we use this (already fixed) bug

Implementation bug in Windows SymCrypt

Potential DDOS ® © & https://bugs.chromium.org/p/project-zero/issues/detail?id=1804

Issue 1804: cryptoapi: SymCrypt modular inverse algorithm = fowE
Reported by taviso@google.com on Tue, Mar 12, 2019, 9:15 PM PDT

There's a bug in the SymCrypt multi-precision arithmetic routines that can cause an infinite loop when calculating the modular inverse on specific bit patterns with
beryptprimitives!SymCryptFdefModInvGeneric.

I've been able to construct an X.509 certificate that triggers the bug. I've found that embedding the certificate in an S/IMIME message, authenticode signature, schannel

connection, and so on will effectively DoS any windows server (e.g. ipsec, iis, exchange, etc) and (depending on the context) may require the machine to be rebooted.
Obviously, lots of software that processes untrusted content (like antivirus) call these routines on untrusted data, and this will cause them to deadlock.

Program verification!

GF(21?8) =

GF(2)[X]/(x"*® + x” + x* + x + 1)

refines

Algorithm 1 Multiplication in G F(2'%%),
Z € GF(2'*%).

Z— 0V +—X
for: = 0 to 127 do
if ¥, = 1 then
Z—ZaV
end if
if V127 = 0 then
V « rightshift(V)
else
V « rightshift(V) & R
end if
end for
return £

refines

$ivp),$T1

$ivp),$counter

$cons
$key), $in@
$end0
$Xip), $Xi

$const),$Ii
$key) , $key
$Xip), $Xip
$key), $rounds
$Ii,$X1, $X1i

— 4

® e @ e O | Hacl.lmpl.Gf128.Generic.fst

procedure Clmul: Val poly4 mul_add:

. . € {:quick} #s: field_spec

Specification B nodifies 7l 8RS S

efl; ri: = .
. ! - text: lbuffer uintg len -
/7. 7 xmml; .
(“the mathematical truth”) requi™Li X stack unit
(requires (A h - live h ctx A live h text A s == F33))

pclmulaq: e
degree (i (ensures (A hg _ hy - modifiesjy ctx hg hy))

proof AN 0 O | aesgem-x86_64-linux.S

xmm2 == pclmulqdq $17, %xmm2, S%xmm5
ensures f l movdqu S%xmm5, S%xmm2
C degree(’ movdqu %xmml, %xmm5
Pseudo_code movdqu %xmm3, %xmml
mov $0, %rl2
“”: 0 0 7 : insrd $0, %rl2d, %xmml
(“implementation blueprint”) L S, e S

pxor %xmml, %xmm2
movdqu %xmm4, %xmml
mov $0, %rl2
1 pinsrd $0, %rl2d, %xmml
proof pr Ut s : iy pshufd $14, %xmml, S%xmml
: pxor S%xmml, %xmm2
movdqu Sxmm3, Sxmml

* mov $0, %rl2
*k pinsrd $3, %rl2d, %xmml
V Ie VaIe/F Low bd : pshufd $79, sxmml, Sxmml
" _> . emma_div_m mov $0, %ril2
u . ” «“ ” MOV)
(assembly'llke) (C'I'ke) emma_quad3: insrd $3, %rl2d, %xmm4
emma_quad3: d - 381k aesgcm-x86_64-linux.S unix | 3188: 0

. | Mnv128 (xmm5
via Vale B i
, // xmm3 := | ra - _cub nre _Aul _2ul
printer olnulqdq (x

#Mov128 (xmm3 static void Hacl Impl Gf128 FieldPreComp fmul pre(uint64 t *x, uint64 t *pre)

/f Xxmm4 := uint64_t *tab = pre + (uint32_t)8U;

Assembly (.asm) C code (.c, .h) 12B(xmm1 uintsdt tmp[2u) = { oU };

clmulqdq (xi for (uint32 t i = (uint32 t)0U; i < (uint32 t)64U; i = i + (uint32 t)1U)
Mov128 (xmm4

uint64_t m = (uint64_t)6U - (x[1U] >> ((uint32_t)63U - i) & (uint64_t)1U);
tmp[OU] = tmp[BU] ~ (m & tab[i * (uint32 t)2U]);
// xmml := | tmp[1U] = tmp[1U] ~ (m & tab[(uint32 t)1U + i * (uint32 t)2U]);
Mov128 (xmml
Pclmulgdqg(xi for (uint32_t i = (uint32_t)OU; i < (uint32_t)64U; i = i + (uint32_t)1U)
{

J// xmm5 := ; uint64 t m = (uint64 t)eU - (x[OU] >> ((uint32 t)63U - i) & (uint64 t)1U);
Pclmuladq (x tmp[OU] = tmp[OU] ~ (m & tab[(uint32 t)128U + i * (uint32 t)2U]);

tmp[1U] = tmp[1U] ~ (m & tab[(uint32 t)129U + i * (uint32 t)2U]);

}
[xmm2 := x[8U] = tmp[OU];

p
% - 9.6k Valegy x[1U] = tmp[1U];

P - 23k Hacl_Gf128 PreComp.c C/*l ®

What is verified?

What do we verity?

Safety

Memory- and type-safety. Mitigates buffer overruns, dangling pointers, code injections. No undefined behavior.

Functional correctness
Our fast implementations behave precisely as our simpler specifications.

Secrecy
Access to secrets, including crypto keys and private app data is restricted according to design.

Our specifications and implementations are written together, in one language (F*)
Drift between spec and implementation cannot happen.

Each application can do custom proofs beyond functional correctness and safety:
- non malleability (parsers)

- crypto games (TLS)

- security reduction (Merkle Trees)

- etc. etc.

COMPUTER SECURITY

Cryptography That Can’t Be Hacked

b Researchers have just released hacker-proof cryptographic code —

programs with the same level of invincibility as a mathematical proof.

¥ nope
/nop/

exclamation INFORMAL

variant of no.
"“Have you seen it?” “Nope.™

Schneier on Security

Blog Newsletter Books Essays News Talks Academic About Me

Blog >

Unhackable Cryptography?

A recent article overhyped the release of EverCrypt, a cryptography library created using formal
methods to prove security against specific attacks.

The Quanta magazine article sets off a series of "snake-oil" alarm bells. The author's Github
README is more measured and accurate, and illustrates what a cool project this really is. But it's not
"hacker-proof cryptographic code."

Tags: cryptography, encryption, hacking, snake oll

same sentiment on: Hacker News, Reddit, Slashdot, twitter, etc.

Will Everest be perfectly secure? No.

Our models make assumptions, e.g.

* The private signing key must remain private and not used in other protocols
* We assume security for core crypto algorithms, based on hard problem:s.

Our models may not be complete

* Our detailed models are designed to exclude all known attacks,
but may be blind to new classes of attack (hardware faults,...)

Our verification toolchain may be buggy

* Our TCB includes Z3, Kremlin, C compilers... Efforts to reduce it are under way.

Computer-aided verification also has advantages: once in place, proof verification is
* automated (but takes hours)
e compositional (we can re-use verified component as building blocks for others)

* maintainable (we can extend or modify our code, and re-check everything as part of Cl).

The Essence of EverCrypt

-verCrypt: no excuses industrial-grade crypto
ibrary, with full verification

EverCrypt

Vale/F* Low*
(“assembly-like”) (“C-like”)

A single artifact for clients to use
State-of-the-art performance

A single verification result (Vale or Low*)
Deep integration for seamless interop
Total abstraction for clients

AES-GCM v/ (AESNI)
ChachaPoly

<

MD5, SHA1
SHA2

SHA3
Blake2

< L

v (SHAEXT)

HMAC
HKDF

<

Curve25519
Ed25519

v (BMI2 + ADX)

N SN S SN LKL K8K K &
<

Chacha20
AES 128, 256 v
AES-CTR v

Poly1305 v (+ AVX + AVX2) v (X64)

One algorithm, several implementations
(multiplexing) —

void EverCrypt Polyl305 polyl1305(uint8 t *dst, uint8 t *src, ui
§int32 t lenl, uint8 t *key)

¢ EverCrypt_Poly1305.c

Verifies multiple implementations (Vale &
Low*) against one specification

Isolates clients from processor and target
details

Auto-detects static & dynamic features
Eliminates illegal instruction errors

Expected by an industrial-grade library

KM - 19k EverCrypt_Poly1365.c

bool avx2 = EverCrypt AutoConfig2 has avx2();

bool avx = EverCrypt AutoConfig2 has avx();

bool valel = EverCrypt AutoConfig2 wants vale();

#if EVERCRYPT_TARGETCONFIG X64

if (avx2)

{
Hacl Polyl1305 256 polyl1305 mac(dst, lenl, src, key);
return;

}

#endif

#if EVERCRYPT _TARGETCONFIG X64

if (avx)

{
Hacl Polyl305 128 polyl305 mac(dst, lenl, src, key);
return;

}

#endif

#if EVERCRYPT_TARGETCONFIG X64

if (valel)

{
EverCrypt Polyl305 polyl305 vale(dst, src, lenl, key);
return;

}

#endif

Hacl Poly1305 32 polyl305 mac(dst, lenl, src, key);

unix | ?7: O Bottom

Several algorithms, one API
(agility)

Verifies that multiple algorithms fit the
same family of specifications

Allows clients to switch between
algorithms (crucial for TLS)

Uses F* meta-programming to templatize
the code

Expected by an industrial-grade library

® O ¢ | EverCrypt_Hash.c
Moid EverCrypt Hash_init(EverCrypt Hash state s *s)

{

EverCrypt Hash state s scrut = *s;
if (scrut.tag == EverCrypt Hash MD5 s)
{
uint32 t *pl = scrut.case MD5 s;
Hacl Hash Core MD5 init(pl);
}
else if (scrut.tag == EverCrypt Hash SHAl s)
{
uint32 t *pl = scrut.case SHAl s;
Hacl Hash Core SHAl init(pl);

}
else if (scrut.tag == EverCrypt Hash SHA2 224 s)
{

uint32 t *pl = scrut.case SHA2 224 s;

Hacl Hash Core SHA2 init 224(pl);
}
else if (scrut.tag == EverCrypt Hash SHA2 256 s)
{

uint32 t *pl = scrut.case SHA2 256 s;

Hacl Hash Core SHA2 init 256(pl);

}
else if (scrut.tag == EverCrypt Hash SHA2 384 s)
{

uint64 t *pl = scrut.case SHA2 384 s;

Hacl Hash Core SHA2 init 384(pl);
}
else if (scrut.tag == EverCrypt Hash SHA2 512 s)
{

uint64 t *pl = scrut.case SHA2 512 s;

Hacl Hash Core SHA2 init 512(pl);
}
else

- 62k EverCrypt_Hash.c C/*1 unix | 359: 0

39% -

Deep integration between C and ASM

(speed)

Implementation Radix Language | CPU cy.

donna64 [2] 51 64-bit C 159634

fiat-crypto [31] 51 64-bit C 145248

amde4-64 [21] S1 Intel x86_64 asm 143302

sandy2x [22] 25.5 Intel AVX asm 135660

EverCrypt portable (this paper) 51 64-bit C 135636

openssl® [5 : 118604

@ CL al. [52] asm

EverCrypt targeted (this paper) 64 64-bit C 113614
+ Intel ADX asm

Figure 10. Performance comparison between Curve25519 Implementations.

Verification allows more optimizations and does not compromise speed.
Mundane parts of the algorithms are written in Low™ while critical bits are in Vale.

A new verified interop layer ensures sound interoperation between two languages.

A foundation for verified apps

(abstraction)
77 77

C client

clients (+ libquiccrypto, miTLS, etc.)

EverCrypt (C API)

agile, multiplexing library

HACL* (C) Vale (ASM) cryptographic providers

EverCrypt seals the abstraction, meaning verified clients
are shielded from underlying verification details.

A significant verification effort

Components LOC
All specifications 8009
Low™ support libraries 6066
Low™ algorithms 17637
Vale libraries and interop (F*) 37127
Vale algorithms (Vale) 25467
EverCrypt layer 4412
Merkle tree 6505
QUIC transport cryptography 2282
Total (hand-written F* and Vale) 107505
Vale algorithms (F* code generated from Vale files) 76685
Compiled code (.c files) 23400
Compiled code (.h files) 4236
Compiled code (ASM files) 18046

Figure 11. System Line Counts.

Verified Assembly Language

in Vale / F*

We have a fast verified AES-GCM

Performance of various verified symmetric crypto / hash implementations

___ “=----------- OpenSSL

GB/s

Ironclad Apps SHA256

2013

9
2014

Vale AES-CBC+Poly1305

Andrew Appel SHA256
(]

2015

2016

Year

Vale AES-GCM-128

Jasmin ChaCha20 + Poly1305

Vale AES-GCM-128

HACL* ChachaPoly
J
9

2017

2018

&

2019

2020

Fastest

assembly
code

Optimizing AES-GCM
ciphertext; ciphertext, ciphertext; cipherts

. add add add add
init-
hash
secret mul secret mul secret mul secret mul
P mod P mod P mod moc
Important optimizations: (((init+cy) *s%P+c,)*s%P+cy)*s%P
- delay mod operations =2 (((init+cy) *s+c,) *s+c3) *s%P
- parallelize add/mul operations - ((init+c,) *s3+c, *s2+c, *s1) % P
- math+bitwise tricks for mod > ((init+¢,) * (3% P) + ¢, * (2% P) + ¢, *s1) % P

- careful instruction scheduling

Vale: exte
assembly

machine model (F*)

instructions

type ins = Base

Trusted
' type reg = Rax | R| Computing

' | Mov(dst:reg, src:reg)
| Add(dst:reg, src:reg)
' | Neg(dst:reg)

. eval(Mov(dst, src), ...) = ... 4
. eval(Add(dst, src), ...) = ...
| eval(Neg(dst), ...) = ... |

print(Mov(dst, src), ...) = .
. “mov “+ (...dst) + (...src)
| print(Add(dst, src), ...) = ... |

nsible, automatec
anguage verification

Add(r1, r1)] i

Add(r1, r0), | | lemma_add(...); !

emma_add(...);

Vale code

machine interface

———————————————————————————

. procedure mov(...)
requires ... '
ensures ...

)

procedure add(...)

procedure Triple() ...
requires rax < 100;
ensures

: rbx == 3 * old(rax);
A
mov(rbx, rax);
add(rax, rbx);
add(rbx, rax);

Vale: extensible, automated
assembly language verification

machine model (F*)

instructions

' typereg=r0 | rl | ...

| type ins = |
Mov(dst:reg, src:reg)

' | Add(dst:reg, src:reg) |

' | Neg(dst:reg) '

. eval(Mov(dst, src), ...) = ... 4
. eval(Add(dst, src), ...) = ...
' eval(Neg(dst), ...) = ...

' Add(r1, 0), | | lemma_add(...); |
| Add(r1, r1)] | idemma_add(...); !

~... verification condition ...

Verification condition

procedure Triple()
requires rax < 100; \ ___ |
ensures verification condition ’
rbx == 3 * rax; \}raxo <100
{ |-
1 Move(rbx, rax); // --> rbx, (rbx; == rax, ==>
2 Add(rax, rbx); //-->rax, rax, + rbx, < 264 /\ (rax, == rax,+ rbx, ==>
3 Add(rbx, rax); //--> rbx3ﬁf<rbx1 + rax, < 2% /\ (rbx; == rbx, + rax, ==>
} ' == 3 * rax,)))

Ugh! Default SMT query looks awful!

- verification condition we want:
e seneas (rax, == raxy+ rbx, ==>
rbx, +rax, <254 e,

——

verification condition we get:

(forall (ghost_result_0:(state * fuel)).
(let (s3, fc3) = ghost_result_0in
eval_code (Ins (Add64 (OReg (Rax)) (OReg (Rbx)))) fc3 s2 == Some s3 /\ ,
eval_operand (OReg Rax) s3 == eval_operand (OReg Rax) s2 + eval_operand (OReg Rbx) s2 /\ '
== update_state (OReg Rax).r s3 s2) ==> :
lemma_Add s2 (OReg Rax) (OReg Rbx) == ghost_result_0 ==>
(forall (s3:state) (fc3:fuel). lemma_Add s2 (OReg Rax) (OReg Rbx) == Mktuple2 s3 fc3 ==>
Cons? codes_Triple.tl /\
(forall (any_resultO:list code). codes_Triple.tl == any_result0 ==>
(forall (any_resultl:list code). codes_Triple.tl.tl == any_resultl ==>
OReg? (OReg Rbx) /\ eval_operand (OReg Rbx) s3 + eval_operand (OReg Rax) s3 < 264

Let's write our own VC generator'

e ??2? Maybe like this: ??? P
Our own Vale
| VC generator

I'm lonely

and sad. ‘

verlflcatlon condition we want:
g (rax, == raxy+ rbx, ==>
. rbx, + rax, < 254

* But won't it be part of TCB?
* And how do we interact with F*?
e Can we reuse F* features and libraries?

Let's write our own VC generator'

. Like this! ,

Our own Vale

VC generator,

written in F¥*,

run by F*'s interpreter during type checking

I'm happy.

.. . . (rax, == raxy+ rbx, ==>
L rbx, +rax, <25 e,

* Part of TCB? No -- we verify its soundness in F*

* Interact with F*? Yes
e Reuse F* features and libraries? Yes

Let's write our own VC generator!
;';;;;,;;a;';g';;i;;g;;':.i";} A e
' ._| A datatype:

type quickCode = ...
Our own Vale type quickCodes =
VC generator, | QEmpty
written in F.*' | QSeq of quickCode * quickCodes ...
run by F*'s interpreter | QLemma of ... (Lemma pre post) * ...

Like our earlier code AST,
but with assertions, lemma calls,

ghost variables, etc.

 verification condition we want: ' A g?
..................... (rax, == rax,+ rbx, ==> | LA e?
| ToX TG <2 | An F* term:
(forall rbx,. rbx, == rax, ==>
rax, + rbx, < 254 /\
(forall rax, rax, == raxy+ rbx, ==>
rbx, + rax, < 2% /\ ...

Demo

e Verification condition generation for Vale

Optimizing Curve255195

match s with
Low* — | M51 -> F51.fmull out f1 f2
| M64 -> F64.fmull out f1 f2

val fmull (dst:u256) (a:u256) (b:uint6d4{v 2 < pow2 17}) :
Stack unit
(requires fun h -> adx_enabled /\ bmi2 enabled /\ ...
(ensures ...)

Interop —

procedure fmull(...)...
lets dst _ptr @= rdi; inA ptr @= rsi; b @= rdx;
requires adx_enabled && bmi2 enabled && ...
ensures ...

fast mull(@, inA b); ... Mov64(b, 38);
carry_pass(false, 0, dst b);

Demo: Interop between Vale and Low™

Conclusions

* We've verified fast assembly language crypto implementations:
« SHA
* Poly1305
* AES-GCM
* Curve25519

* Expressive logics + SMT automation

* We wrote our own domain-specific VC generator
* We proved it sound
* We run it from with F*'s type checker, and verification is fast

* What other opportunities are there?

https://project-everest.github.io/

https://project-everest.github.io/

Deployments and applications

Level 1: cherry-pick approach A

‘\W

polyl305-simd is among the failing algorithms because it loses carry bits when
handling long "all 0xff bytes" inputs. polyl305-avx2-x86 64.S is definitely
broken, and polyl305-sse2-x86 64.S *might* be too. I am working on a patch...

Example: Linux Kernel (ZINC).
- Kernel already has multiplexing and CPU
auto-detection facilities.

- Taking EverCrypt Curve25519 (C/ASM)
- Also took Fiat crypto
- They want algorithms we don’t yet have

Also in that category: Firefox

The latter project takes the approach of modeling the
algorithm in F* and proving the model correct, which F*
is designed to optimize. Then — in a term of art which
never fails to make me think of Arnold
Schwarzenegger's Terminator descending into a bath
of molten metal — the model is "lowered into" C (or in
some cases, all the way into assembly language).
According to Donenfeld, this produces C which, though
slightly non-idiomatic, is surprisingly readable, and
much more likely to be bug-free than human-written
code. It also produces some of the fastest C
implementations that exist, which he suspects is
because the formal verification process removes certain
things that are not obviously removable when you're
working the mathematics out by hand.

https://www.fstar-lang.org/

Level 2: the whole library

* Easiest approach: just take the whole directory

* Expectations are higher for security-related applications

* Beneficial peer pressure

Examples: Concordium &
Tezos blockchains, remote
attestation (UC Irvine)

network-based attacks from compromising CIDER. We shield
the remaining core CIDER code from the adversary through
isolation in time and by checking the integrity of all inputs using
the formally verified High-Assurance Cryptographic Library
(HACL) [34].

Level 3: extend

* Formal verification an advantage for standards competitions (NIST)

* Post-quantum algorithms:
gTESLA, Frodo

Lattice-based digital signature
scheme: qTESLA

e Sedat Akleylek Ondokuz Mayis University, Turkey
H 3 < Erdem Alkim
_E%E: Paulo S. L. M. Barreto University of Washington Tacoma, USA
s Nina Bindel TU Darmstadt, Germany
Johannes Buchmann TU Darmstadt, Germany
Edward Eaton ISARA Corporation, Canada
Gus Gutoski ISARA Corporation, Canada
Juliane Kramer TU Darmstadt, Germany
v Patrick Longa Microsoft Research, USA
Harun Polat TU Darmstadt, Germany
Jefferson E. Ricardini University of Séo Paulo, Brazil
Gustavo Zanon University of Sao Paulo, Brazil

A Unwersitar =. Microsoft - ’0:°ISARA

UW TACOMA 2579 DARMSTADT

. 0

EverCrypt as a foundation for verified software

* EverCrypt = a building block
* Why just limit ourselves to TLS?
* Several artifacts have been developed on top of EverCrypt

shields clients from conflicting, disparate specifications in favor of crisp,
unified cryptographic constructions

A custom provider: libquiccrypto

“The cryptographic toolbox one needs to implement QUIC”,

before

libquiccryto (C)

ad-hoc calls

after

libquiccrypto (Low™)

EverCrypt (Low*)

ER Windows

memory safety

functional
correctness

cryptographic
model

TTTTTTT

A complete component: Merkle tree

* Used to verify integrity of a large number of blocks [= Il =

* Needs a hash algorithm

By Azaghal - Own work, CCO,
https://commons.wikimedia.org/w/index.php?curid=18157888

* Needs the fastest hash for the give platform
* Proof of collision resistance by reduction

SO TN A1 8770 QL O PASSED | # Acure Pipeiines ‘succeeded | codecov [81%] docs imicrosoft gthubio/CCr

(Build 2019) The Confidential Consortium Framework

/ Microsoft
Azure (® & GitHub, Inc. (US) | https://github.com/microsoft/CCF

A full-fledged protocol: Signal™*

e Secure communications protocol

e Used by: WhatsApp, Facebook Messenger, Signal, Skype
* Sophisticated cryptography: X3DH, double-ratched

* Forward secrecy, post-compromise security, etc. etc.

A verified implementation compiled to C and ... M

A whole new target for EverCrypt: WASM

- Shipped in all major browsers (including Edge)
- WASM delivers portability and performance
- LLVM backend (“emscripten”)

Opportunity:
- Desktop applications are running on a web framework like Electron (e.g. Skype, Signal, VS Code, Atom, WhatsApp)
- Framework support for cryptography is lacking (WebCrypto on the web, node.js crypto on the desktop)

A WASM backend for KreMLin:

- Auditable and delivers competitive performance

- An alternative, faster, less trustworthy backend: Low* -> C (via KreMLin) -> WASM (via LLVM)

- EverCrypt for the web: enables instant access to the latest cryptographic primitives on both Desktop & Web

Applications already:
- Use the WASM backend of KreMLin for verified, fast implementation of messaging protocols, including Signal (IEEE
S&P 2019)

A vision for EverCrypt

* An industrial-grade crypto provider is now a reality
* already adopted
 demonstrates OpenSSL’s libcrypto is no longer inevitable

EVERCRYH

* Peer pressure to use verified code (good)
* blockchains pushing for formal verification
» skepticism of crypto is high (backdoors? magic constants? Russian S-BOX?)
* open-source more nimble (Linux, BoringSSL, Firefox)

* EverCrypt is at the forefront
* breadth and scale of the verification effort
* With other folks in the same space: MIT, Galois, Amazon

* Prediction: at the five-year horizon, unverified crypto will be a liability

