
Formal Verification,
Language Extensibility, and
Proof automation

F* and Meta-F*

https://fstar-lang.github.io

https://project-everest.github.io/

https://fstar-lang.github.io/

Classified as Microsoft Confidential

• MSR Redmond
• Barry Bond

• Chris Hawblitzel

• Qunyan Magnus

• Kiran Muthabatulla

• Jonathan Protzenko

• Tahina Ramananandro

• Nikhil Swamy

• Gustavo Varo

• MSR Cambridge
• Antoine Delignat-Lavaud

• Cédric Fournet

• Christoph M. Wintersteiger

• Santiago Zanella-Béguelin

• MSR India
• Aseem Rastogi

• INRIA Paris
• Danel Ahman

• Kenji Maillard

• Benjamin Beurdouche

• Karthikeyan Bhargavan

• Victor Dumitrescu

• Cătălin Hriţcu

• Marina Polubelova

• CMU (Pittsburgh)
• Jay Bosamiya

• Aymeric Fromherz

• Bryan Parno

• Edinburgh
• Markulf Kohlweiss

• Interns, open-source
contributors, visitors,
alumns

• Guido Martinez

• Zoe Paraskevopoulou

• Yao Li

• Joonwon Choi

• Clément Pit-Claudel

• Nick Giannarakis

• Niklas Grimm

• Anita Gollamudi

• Nadim Kobeissi

• Matteo Maffei

• Asher Manning

• Monal Narasimhamurthy

• Gordon Plotkin

• Perry Wang

• Jean-Karim Zinzindohoue

Threat model

Goal: A secure channel

connect(server,port);

send “GET…”;

data = recv();

send “POST…”;

…

accept(port);

request = recv();

send “<html>…”;

order = recv();

…

Public Key

Infrastructure

20 years of attacks & fixes
Buffer overflows

Incorrect state machines

Lax certificate parsing

Weak or poorly implemented crypto

Side channels

Informal security goals

Dangerous APIs

Flawed standards

Mainstream implementations
OpenSSL, SChannel, NSS, …

Much discussions
IETF, Google, Mozilla, Microsoft, CDNs,
cryptographers, network engineers, …

Much improvements
• Modern design

• Fewer roundtrips

• Stronger security

New implementations
required for all

• An early implementer and verified too!

• Find & fix flaws before it’s too late

RFC 8446: Aug 2018

Including many of our
proposals

Mentioning many formal models of the
protocol, including our verified
implementation of the record layer

…

TLS

RSA SHA

Network buffers

Untrusted network (TCP, UDP, …)

Crypto

Algorithms

Project Everest

Verified Secure Components
in the TLS Ecosystem

QUIC
ECDH AES

F*: A general

purpose

programming

language

and verification

tool

kreMLin
Compiler from

(a subset of)

F* to C

Verification Tools and Methodology

val nbytes 16 →
u32 →
nbytes len →
nbytes 32 ∧ →

ST unit
requires λ → ∈ ∧ ∈ ∧ ∈
ensures λ →

let in
let in
modifies ∧

Math spec in F*

poly1305_mac computes a

polynomial in GF(2130-5),

storing the result in tag,

and not modifying

anything else

Efficient C

implementation

Verification imposes no

runtime performance

overhead

void

poly1305_mac(uint8_t *tag, uint32_t len, uint8_t *msg, uint8_t *key)

{

uint64_t tmp [10] = { 0 };

uint64_t *acc = tmp

uint64_t *r = tmp + (uint32_t)5;

uint8_t s[16] = { 0 };

Crypto_Symmetric_Poly1305_poly1305_init(r, s, key);

Crypto_Symmetric_Poly1305_poly1305_process(msg, len, acc, r);

Crypto_Symmetric_Poly1305_poly1305_finish(tag, acc, s);

}

8

Protocol specs

Protocol security proofs

Security spec

Crypto assumptions

Implementation

AES is a pseudo-random function

= Verified

= Trusted

Secure authenticated channel

Everest in Action, so far

Production deployments of Everest Verified Cryptography

So what is this F* thing anyway?

Two camps of program verification tools

F*: Bridging the gap

Beyond Pure Code

Effects

Effectful programs
with Hoare-style Specifications

STExn

True

Effectful programs
with Hoare-style Specifications

STExn

Exploiting Expressiveness & Extensibility

Low*: A subset of F* that compiles to C

Low* to C

And to support compilation to C, in nearly 1-1 correspondence, for auditability of our generated code

Designed to allow manipulating a C-like view of memory

Pointer arithmetic

Stack allocation

Erased

specification

But SMT-based proofs can go awry

And can be at a low level of abstraction

Domain-specific languages,
ad hoc proof automation,
extensibility

Domain-specific languages,
ad hoc proof automation,
extensibility

elaborator reflection

A passive compiler pipeline

Parsing &

Desugaring
Typechecker

Extraction aka

Code generation

Higher-order

Unification
Normalizer SMT Encoding

Scripting components with a metaprogram

Parsing &

Desugaring
Typechecker

Extraction aka

Code generation

Higher-order

Unification
Normalizer SMT Encoding

Scripting a language implementation
from within the language

From F* to Meta-F*,
In three easy steps

Proof-state: A collection of typed holes

Metaprograms are proofstate transformers

• Uses an existing F* effect for non-termination: Dv
• The type of the state is an abstract type: proofstate

• error is the type of exceptions

State + Exception + Non-termination monad

Step 2

Primitive operations on

Meta

Inl

“Goal is not an arrow”

Step 3

Reflecting on syntax

unquote Meta

Putting it together

id Type

Type

Type

Type

And can be at a low level of abstraction

Remember
this?

Metaprogramming mutually inverse
parsers and formatters

Putting it together

f

assert

𝑥: 𝑛𝑎𝑡, ℎ: 𝑥 > 1 ⊢ _ ∶ (𝑥 ∗ 𝑥 > 𝑥)

SMT: Just one of F*’s tactic primitives
Meta

f

assert

𝑥: 𝑛𝑎𝑡, ℎ: 𝑥 > 1 ⊢ _ ∶ (𝑥 ∗ 𝑥 > 𝑥)

But SMT-based proofs can go awry

Remember
this?

SMT + Tactics for more automated, robust proofs

• Prior manual proof required 41 steps of
explicit rewriting lemmas (!)

Language extension with native
metaprograms

Language extension with native
metaprograms

Some takeaways

improve

