
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Dijkstra Monads for Free

Danel Ahman, Cătălin Hriţcu, Kenji Maillard,
Guido Martínez, Gordon Plotkin, Jonathan Protzenko,

Aseem Rastogi, Nikhil Swamy

Microsoft Research, University of Edinburgh,
Inria, ENS Paris, UNR Argentina

POPL ’17

1 / 16

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Combining dependent types and effects

• Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F⋆)

• Common approach: encapsulating effectul programs in monads.
But how to reason about them?

• One idea (HTT/F⋆) is to index the monad with a specification:
(* No spec *)
val incr : unit →ST unit
(* Hoare triples *)
val incr : unit →ST unit (requires (λ n0 →True))

(ensures (λ n0 r n1 → n1 = n0 + 1))
(* Dijkstra’s WPs *)
val incr : unit →ST unit (λ post n0 → post () (n0 + 1))

• Dijkstra monads are a generalization of Dijkstra’s predicate transformers to
arbitrary effects, and are the bread and butter of F⋆’s reasoning about effects.

2 / 16

Combining dependent types and effects

• Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F⋆)
• Common approach: encapsulating effectul programs in monads.

But how to reason about them?

• One idea (HTT/F⋆) is to index the monad with a specification:
(* No spec *)
val incr : unit →ST unit
(* Hoare triples *)
val incr : unit →ST unit (requires (λ n0 →True))

(ensures (λ n0 r n1 → n1 = n0 + 1))
(* Dijkstra’s WPs *)
val incr : unit →ST unit (λ post n0 → post () (n0 + 1))

• Dijkstra monads are a generalization of Dijkstra’s predicate transformers to
arbitrary effects, and are the bread and butter of F⋆’s reasoning about effects.

2 / 16

Combining dependent types and effects

• Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F⋆)
• Common approach: encapsulating effectul programs in monads.

But how to reason about them?
• One idea (HTT/F⋆) is to index the monad with a specification:

(* No spec *)
val incr : unit →ST unit
(* Hoare triples *)
val incr : unit →ST unit (requires (λ n0 →True))

(ensures (λ n0 r n1 → n1 = n0 + 1))

(* Dijkstra’s WPs *)
val incr : unit →ST unit (λ post n0 → post () (n0 + 1))

• Dijkstra monads are a generalization of Dijkstra’s predicate transformers to
arbitrary effects, and are the bread and butter of F⋆’s reasoning about effects.

2 / 16

Combining dependent types and effects

• Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F⋆)
• Common approach: encapsulating effectul programs in monads.

But how to reason about them?
• One idea (HTT/F⋆) is to index the monad with a specification:

(* No spec *)
val incr : unit →ST unit
(* Hoare triples *)
val incr : unit →ST unit (requires (λ n0 →True))

(ensures (λ n0 r n1 → n1 = n0 + 1))
(* Dijkstra’s WPs *)
val incr : unit →ST unit (λ post n0 → post () (n0 + 1))

• Dijkstra monads are a generalization of Dijkstra’s predicate transformers to
arbitrary effects, and are the bread and butter of F⋆’s reasoning about effects.

2 / 16

Combining dependent types and effects

• Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F⋆)
• Common approach: encapsulating effectul programs in monads.

But how to reason about them?
• One idea (HTT/F⋆) is to index the monad with a specification:

(* No spec *)
val incr : unit →ST unit
(* Hoare triples *)
val incr : unit →ST unit (requires (λ n0 →True))

(ensures (λ n0 r n1 → n1 = n0 + 1))
(* Dijkstra’s WPs *)
val incr : unit →ST unit (λ post n0 → post () (n0 + 1))

• Dijkstra monads are a generalization of Dijkstra’s predicate transformers to
arbitrary effects, and are the bread and butter of F⋆’s reasoning about effects.

2 / 16

Programs
(with dirty effects)

Dijkstra Monad
(pure and beautiful)

correctly
specifies

✓

3 / 16

Programs
(with dirty effects)

Dijkstra Monad
(pure and beautiful)

correctly
specifies ✓

3 / 16

Problem...

• The Dijkstra monad for each effect needs to be hand-crafted, and proven correct.
• This made F⋆ rigid, in that it had a fixed supply of effects.

• A fundamental question arises:

What is the relation between the monadic representation
for an effect and its Dijkstra monad?

• Old dog, new trick: Dijkstra monads are a CPS transform of the representation
monad, allowing automatic derivation.

• Simple monadic definition gives correct-by-construction WP calculus for it.
• Implemented in F⋆... now with user-defined effects.
• Huge boost in simplicity and expressiveness of the effect system.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

4 / 16

Problem...

• The Dijkstra monad for each effect needs to be hand-crafted, and proven correct.
• This made F⋆ rigid, in that it had a fixed supply of effects.
• A fundamental question arises:

What is the relation between the monadic representation
for an effect and its Dijkstra monad?

• Old dog, new trick: Dijkstra monads are a CPS transform of the representation
monad, allowing automatic derivation.

• Simple monadic definition gives correct-by-construction WP calculus for it.
• Implemented in F⋆... now with user-defined effects.
• Huge boost in simplicity and expressiveness of the effect system.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

4 / 16

Problem... solution!

• The Dijkstra monad for each effect needs to be hand-crafted, and proven correct.
• This made F⋆ rigid, in that it had a fixed supply of effects.
• A fundamental question arises:

What is the relation between the monadic representation
for an effect and its Dijkstra monad?

• Old dog, new trick: Dijkstra monads are a CPS transform of the representation
monad, allowing automatic derivation.

• Simple monadic definition gives correct-by-construction WP calculus for it.

• Implemented in F⋆... now with user-defined effects.
• Huge boost in simplicity and expressiveness of the effect system.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

4 / 16

Problem... solution!

• The Dijkstra monad for each effect needs to be hand-crafted, and proven correct.
• This made F⋆ rigid, in that it had a fixed supply of effects.
• A fundamental question arises:

What is the relation between the monadic representation
for an effect and its Dijkstra monad?

• Old dog, new trick: Dijkstra monads are a CPS transform of the representation
monad, allowing automatic derivation.

• Simple monadic definition gives correct-by-construction WP calculus for it.
• Implemented in F⋆... now with user-defined effects.
• Huge boost in simplicity and expressiveness of the effect system.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

4 / 16

Problem... solution!

• The Dijkstra monad for each effect needs to be hand-crafted, and proven correct.
• This made F⋆ rigid, in that it had a fixed supply of effects.
• A fundamental question arises:

What is the relation between the monadic representation
for an effect and its Dijkstra monad?

• Old dog, new trick: Dijkstra monads are a CPS transform of the representation
monad, allowing automatic derivation.

• Simple monadic definition gives correct-by-construction WP calculus for it.
• Implemented in F⋆... now with user-defined effects.
• Huge boost in simplicity and expressiveness of the effect system.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *
Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

4 / 16

A reminder on WPs

• Dijkstra monads are essentially monads over weakest-preconditions (WP).
• A WP is a predicate transformer mapping a postcondition on the outputs of a

computation to a precondition on its inputs.

• Example: for stateful computations, WPs are of type

STwp t = (t → S → Type0) → S → Type0

where t is the result type.
• F⋆’s typing judgment gives a WP to each computation:

Γ ⊢ e : ST t wp

5 / 16

A reminder on WPs

• Dijkstra monads are essentially monads over weakest-preconditions (WP).
• A WP is a predicate transformer mapping a postcondition on the outputs of a

computation to a precondition on its inputs.
• Example: for stateful computations, WPs are of type

STwp t = (t → S → Type0) → S → Type0

where t is the result type.

• F⋆’s typing judgment gives a WP to each computation:

Γ ⊢ e : ST t wp

5 / 16

A reminder on WPs

• Dijkstra monads are essentially monads over weakest-preconditions (WP).
• A WP is a predicate transformer mapping a postcondition on the outputs of a

computation to a precondition on its inputs.
• Example: for stateful computations, WPs are of type

STwp t = (t → S → Type0) → S → Type0

where t is the result type.

• F⋆’s typing judgment gives a WP to each computation:

Γ ⊢ e : ST t wp

5 / 16

A reminder on WPs

• Dijkstra monads are essentially monads over weakest-preconditions (WP).
• A WP is a predicate transformer mapping a postcondition on the outputs of a

computation to a precondition on its inputs.
• Example: for stateful computations, WPs are of type

STwp t = (t → S → Type0) → S → Type0

where t is the result type.
• F⋆’s typing judgment gives a WP to each computation:

Γ ⊢ e : ST t wp

5 / 16

Verifying code

let incr () = let n = get () in put (n + 1)

• Turn it into explicitly monadic form
• Compute a WP by simple type inference

val get : unit →ST int getwp
val put : n1:int →ST unit (setwp n1)
val bindst : ∀wa wb. ST a wa → (x:a → ST b (wb x)) →ST b (bindwpst wa wb)

to get
val incr : unit → ST unit (bindwpst getwp (λ n → setwp (n + 1)))

= val incr : unit → ST unit (λ post n0 → post () (n0 + 1))

6 / 16

Verifying code

let incr () = bindst (get ()) (λ n → put (n + 1))

• Turn it into explicitly monadic form

• Compute a WP by simple type inference
val get : unit →ST int getwp
val put : n1:int →ST unit (setwp n1)
val bindst : ∀wa wb. ST a wa → (x:a → ST b (wb x)) →ST b (bindwpst wa wb)

to get
val incr : unit → ST unit (bindwpst getwp (λ n → setwp (n + 1)))

= val incr : unit → ST unit (λ post n0 → post () (n0 + 1))

6 / 16

Verifying code

let incr () = bindst (get ()) (λ n → put (n + 1))

• Turn it into explicitly monadic form
• Compute a WP by simple type inference

val get : unit →ST int getwp
val put : n1:int →ST unit (setwp n1)
val bindst : ∀wa wb. ST a wa → (x:a → ST b (wb x)) →ST b (bindwpst wa wb)

to get
val incr : unit → ST unit (bindwpst getwp (λ n → setwp (n + 1)))

= val incr : unit → ST unit (λ post n0 → post () (n0 + 1))

6 / 16

Verifying code

let incr () = bindst (get ()) (λ n → put (n + 1))

• Turn it into explicitly monadic form
• Compute a WP by simple type inference

val get : unit →ST int getwp
val put : n1:int →ST unit (setwp n1)
val bindst : ∀wa wb. ST a wa → (x:a → ST b (wb x)) →ST b (bindwpst wa wb)

to get
val incr : unit → ST unit (bindwpst getwp (λ n → setwp (n + 1)))

= val incr : unit → ST unit (λ post n0 → post () (n0 + 1))

6 / 16

Verifying code

let incr () = bindst (get ()) (λ n → put (n + 1))

• Turn it into explicitly monadic form
• Compute a WP by simple type inference

val get : unit →ST int getwp
val put : n1:int →ST unit (setwp n1)
val bindst : ∀wa wb. ST a wa → (x:a → ST b (wb x)) →ST b (bindwpst wa wb)

to get
val incr : unit → ST unit (bindwpst getwp (λ n → setwp (n + 1)))

= val incr : unit → ST unit (λ post n0 → post () (n0 + 1))

6 / 16

Verifying code

let incr () = bindst (get ()) (λ n → put (n + 1))

• Turn it into explicitly monadic form
• Compute a WP by simple type inference

val get : unit →ST int getwp
val put : n1:int →ST unit (setwp n1)
val bindst : ∀wa wb. ST a wa → (x:a → ST b (wb x)) →ST b (bindwpst wa wb)

to get
val incr : unit → ST unit (bindwpst getwp (λ n → setwp (n + 1)))

= val incr : unit → ST unit (λ post n0 → post () (n0 + 1))

6 / 16

Primitive specs

STwp t = (t → S → Type0) → S → Type0
returnwpst v = λp s0. p v s0
bindwpst wp f = λp s0. wp (λv s1. f v p s1) s0
getwpst = λp s0. p s0 s0
setwpst s1 = λp _. p () s1

ST t = S → t × S
returnst v = λs0. (v, s0)
bindst m f = λs0. let vs = m s0 in f (fst vs) (snd vs)
get = λs0. (s0, s0)
set s1 = λ_. ((), s1)

Can be derived automatically!

7 / 16

Primitive specs

STwp t = S → (t × S → Type0) → Type0
returnwpst v = λs0 p. p (v, s0)
bindwpst wp f = λs0 p. wp s0 (λvs. f (fst vs) (snd vs) p)
getwpst = λs0 p. p (s0, s0)
setwpst s1 = λ_ p. p ((), s1)

ST t = S → t × S
returnst v = λs0. (v, s0)
bindst m f = λs0. let vs = m s0 in f (fst vs) (snd vs)
get = λs0. (s0, s0)
set s1 = λ_. ((), s1)

Can be derived automatically!

7 / 16

Primitive specs

STwp t = S → (t × S → Type0) → Type0
returnwpst v = λs0 p. p (v, s0)
bindwpst wp f = λs0 p. wp s0 (λvs. f (fst vs) (snd vs) p)
getwpst = λs0 p. p (s0, s0)
setwpst s1 = λ_ p. p ((), s1)

ST t = S → t × S
returnst v = λs0. (v, s0)
bindst m f = λs0. let vs = m s0 in f (fst vs) (snd vs)
get = λs0. (s0, s0)
set s1 = λ_. ((), s1)

Can be derived automatically!

7 / 16

Primitive specs

STwp t = S → (t × S → Type0) → Type0
returnwpst v = λs0 p. p (v, s0)
bindwpst wp f = λs0 p. wp s0 (λvs. f (fst vs) (snd vs) p)
getwpst = λs0 p. p (s0, s0)
setwpst s1 = λ_ p. p ((), s1)

ST t = S → t × S
returnst v = λs0. (v, s0)
bindst m f = λs0. let vs = m s0 in f (fst vs) (snd vs)
get = λs0. (s0, s0)
set s1 = λ_. ((), s1)

Can be derived automatically!
7 / 16

Formalization

• We introduce two calculi: dm and a new F⋆ formalization called emf⋆.

• dm: simply-typed with an abstract base monad τ (and somewhat restricted)
• Used to define monads, actions, lifts

• emf⋆: dependently-typed, allows for user-defined effects
• Two translations from well-typed dm terms to emf⋆

• ⋆-translation: gives specification (selective CPS)
• Elaboration: gives implementation (essentially an identity)

• ⋆-translation gives a correct Dijkstra monad for elaborated terms.
Examples: state, exceptions, continuations...

8 / 16

Formalization

• We introduce two calculi: dm and a new F⋆ formalization called emf⋆.
• dm: simply-typed with an abstract base monad τ (and somewhat restricted)

• Used to define monads, actions, lifts
• emf⋆: dependently-typed, allows for user-defined effects

• Two translations from well-typed dm terms to emf⋆

• ⋆-translation: gives specification (selective CPS)
• Elaboration: gives implementation (essentially an identity)

• ⋆-translation gives a correct Dijkstra monad for elaborated terms.
Examples: state, exceptions, continuations...

8 / 16

Formalization

• We introduce two calculi: dm and a new F⋆ formalization called emf⋆.
• dm: simply-typed with an abstract base monad τ (and somewhat restricted)

• Used to define monads, actions, lifts
• emf⋆: dependently-typed, allows for user-defined effects
• Two translations from well-typed dm terms to emf⋆

• ⋆-translation: gives specification (selective CPS)
• Elaboration: gives implementation (essentially an identity)

• ⋆-translation gives a correct Dijkstra monad for elaborated terms.
Examples: state, exceptions, continuations...

8 / 16

Formalization

• We introduce two calculi: dm and a new F⋆ formalization called emf⋆.
• dm: simply-typed with an abstract base monad τ (and somewhat restricted)

• Used to define monads, actions, lifts
• emf⋆: dependently-typed, allows for user-defined effects
• Two translations from well-typed dm terms to emf⋆

• ⋆-translation: gives specification (selective CPS)
• Elaboration: gives implementation (essentially an identity)

• ⋆-translation gives a correct Dijkstra monad for elaborated terms.
Examples: state, exceptions, continuations...

8 / 16

e : C

e⋆ : C⋆

(dm) (emf⋆)

e : FC e⋆

Logical relation

⋆-tra
nslation

elaboration
correctly

specifies

9 / 16

e : C

e⋆ : C⋆

(dm) (emf⋆)

e : FC e⋆

Logical relation

⋆-tra
nslation

elaboration
correctly

specifies

9 / 16

Pure in emf⋆

• Pure is the only primitive emf⋆ effect.
• A WP for Pure t is of type

(t → Type0) → Type0

• The Dijkstra monad for Pure is exactly the continuation monad.
Lemma (Correctness of Pure)
If ⊢ e : Pure t wp and ⊨ wp p, then e⇝∗ v s.t. ⊨ p v.

10 / 16

Pure in emf⋆

• Pure is the only primitive emf⋆ effect.
• A WP for Pure t is of type

(t → Type0) → Type0

• The Dijkstra monad for Pure is exactly the continuation monad.

Lemma (Correctness of Pure)
If ⊢ e : Pure t wp and ⊨ wp p, then e⇝∗ v s.t. ⊨ p v.

10 / 16

Pure in emf⋆

• Pure is the only primitive emf⋆ effect.
• A WP for Pure t is of type

(t → Type0) → Type0

• The Dijkstra monad for Pure is exactly the continuation monad.
Lemma (Correctness of Pure)
If ⊢ e : Pure t wp and ⊨ wp p, then e⇝∗ v s.t. ⊨ p v.

10 / 16

Reasoning about ST

• Say we have a term e such that

e : S → t × S

• From logical relation, we get

e : s0:S → Pure (t × S) (e⋆ s0)

• From previous and correctness of Pure, we get
Corollary (Correctness of ST)
If ⊢ e : S → t × S, and ⊨ e⋆ s0 p, then e s0 ⇝∗ (v, s) s.t. ⊨ p (v, s).

11 / 16

Reasoning about ST

• Say we have a term e such that

e : S → t × S

• From logical relation, we get

e : s0:S → Pure (t × S) (e⋆ s0)

• From previous and correctness of Pure, we get
Corollary (Correctness of ST)
If ⊢ e : S → t × S, and ⊨ e⋆ s0 p, then e s0 ⇝∗ (v, s) s.t. ⊨ p (v, s).

11 / 16

Reasoning about ST

• Say we have a term e such that

e : S → t × S

• From logical relation, we get

e : s0:S → Pure (t × S) (e⋆ s0)

• From previous and correctness of Pure, we get
Corollary (Correctness of ST)
If ⊢ e : S → t × S, and ⊨ e⋆ s0 p, then e s0 ⇝∗ (v, s) s.t. ⊨ p (v, s).

11 / 16

Relating effects

• In dm, we can also provide a lift between two monads.

ST t = S → t × S EXNST t = S → (1 + t)× S

lift : ST t → EXNST t
lift m = λs0. let vs = m s0 in (inr (fst vs), snd vs)

• It will be translated to a correct Dijkstra monad lift.

liftwp : STwp t → EXNSTwp t
liftwp wp = λs0 p. wp s0 (λvs. p (inr (fst vs), snd vs))

12 / 16

Relating effects

• In dm, we can also provide a lift between two monads.

ST t = S → t × S EXNST t = S → (1 + t)× S

lift : ST t → EXNST t
lift m = λs0. let vs = m s0 in (inr (fst vs), snd vs)

• It will be translated to a correct Dijkstra monad lift.

liftwp : STwp t → EXNSTwp t
liftwp wp = λs0 p. wp s0 (λvs. p (inr (fst vs), snd vs))

12 / 16

13 / 16

Properties of the translations
Besides correctly specifying programs, the generated WPs enjoys some nice properties

• The ⋆-translation preserves equality

• Monads mapped to Dijkstra monads
• Lifts mapped to Dijkstra lifts
• Laws about actions preserved

• e⋆ is monotonic: it maps weaker postconditions to weaker preconditions.

(∀x.p1 x =⇒ p2 x) =⇒ e⋆ p1 =⇒ e⋆ p2

• e⋆ is conjunctive: it distributes over ∧ and ∀.

e⋆ (λx. p1 x ∧ p2 x) ⇐⇒ e⋆ p1 ∧ e⋆ p2

• These properties together ensure that any dm monad provides a correct Dijkstra
monad, that’s also usable within the F⋆ compiler.

14 / 16

Properties of the translations
Besides correctly specifying programs, the generated WPs enjoys some nice properties

• The ⋆-translation preserves equality
• Monads mapped to Dijkstra monads
• Lifts mapped to Dijkstra lifts
• Laws about actions preserved

• e⋆ is monotonic: it maps weaker postconditions to weaker preconditions.

(∀x.p1 x =⇒ p2 x) =⇒ e⋆ p1 =⇒ e⋆ p2

• e⋆ is conjunctive: it distributes over ∧ and ∀.

e⋆ (λx. p1 x ∧ p2 x) ⇐⇒ e⋆ p1 ∧ e⋆ p2

• These properties together ensure that any dm monad provides a correct Dijkstra
monad, that’s also usable within the F⋆ compiler.

14 / 16

Properties of the translations
Besides correctly specifying programs, the generated WPs enjoys some nice properties

• The ⋆-translation preserves equality
• Monads mapped to Dijkstra monads
• Lifts mapped to Dijkstra lifts
• Laws about actions preserved

• e⋆ is monotonic: it maps weaker postconditions to weaker preconditions.

(∀x.p1 x =⇒ p2 x) =⇒ e⋆ p1 =⇒ e⋆ p2

• e⋆ is conjunctive: it distributes over ∧ and ∀.

e⋆ (λx. p1 x ∧ p2 x) ⇐⇒ e⋆ p1 ∧ e⋆ p2

• These properties together ensure that any dm monad provides a correct Dijkstra
monad, that’s also usable within the F⋆ compiler.

14 / 16

Properties of the translations
Besides correctly specifying programs, the generated WPs enjoys some nice properties

• The ⋆-translation preserves equality
• Monads mapped to Dijkstra monads
• Lifts mapped to Dijkstra lifts
• Laws about actions preserved

• e⋆ is monotonic: it maps weaker postconditions to weaker preconditions.

(∀x.p1 x =⇒ p2 x) =⇒ e⋆ p1 =⇒ e⋆ p2

• e⋆ is conjunctive: it distributes over ∧ and ∀.

e⋆ (λx. p1 x ∧ p2 x) ⇐⇒ e⋆ p1 ∧ e⋆ p2

• These properties together ensure that any dm monad provides a correct Dijkstra
monad, that’s also usable within the F⋆ compiler.

14 / 16

Conclusions and further work

• We show a formal connection between WPs and CPS, with good properties.
• New version of F⋆ with user-defined effects:

greatly broadens its applications and reduces proof obligations.
• Extrinsic reasoning; primitive effects: details in paper.

Further work:
• Exciting new opportunities in verification:

probabilistic computation, concurrency, cost analysis...
• Improve the expresiveness of dm.

Thank you!

15 / 16

Conclusions and further work

• We show a formal connection between WPs and CPS, with good properties.
• New version of F⋆ with user-defined effects:

greatly broadens its applications and reduces proof obligations.
• Extrinsic reasoning; primitive effects: details in paper.

Further work:
• Exciting new opportunities in verification:

probabilistic computation, concurrency, cost analysis...
• Improve the expresiveness of dm.

Thank you!

15 / 16

Conclusions and further work

• We show a formal connection between WPs and CPS, with good properties.
• New version of F⋆ with user-defined effects:

greatly broadens its applications and reduces proof obligations.
• Extrinsic reasoning; primitive effects: details in paper.

Further work:
• Exciting new opportunities in verification:

probabilistic computation, concurrency, cost analysis...
• Improve the expresiveness of dm.

Thank you!

15 / 16

Thank you!

16 / 16

