Dijkstra Monads for Free

Danel Ahman, Cătălin Hriţcu, Kenji Maillard, **Guido Martínez**, Gordon Plotkin, Jonathan Protzenko, Aseem Rastogi, Nikhil Swamy

Microsoft Research, University of Edinburgh, Inria, ENS Paris, UNR Argentina

POPL '17

• Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F*)

- Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F^{\star})
- Common approach: encapsulating effectul programs in monads. But how to reason about them?

- Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F^{\star})
- Common approach: encapsulating effectul programs in monads. But how to reason about them?
- One idea (HTT/F^*) is to index the monad with a specification:

- Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F^{\star})
- Common approach: encapsulating effectul programs in monads. But how to reason about them?
- One idea (HTT/ F^{\star}) is to index the monad with a specification:

```
(* No spec *)

val incr : unit \rightarrow ST unit

(* Hoare triples *)

val incr : unit \rightarrow ST unit (requires (\lambda \ n_0 \rightarrow True))

(ensures (\lambda \ n_0 \ r \ n_1 \rightarrow n_1 = n_0 + 1))

(* Dijkstra's WPs *)

val incr : unit \rightarrow ST unit (\lambda \ post \ n_0 \rightarrow post () (n_0 + 1))
```

- Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F^{\star})
- Common approach: encapsulating effectul programs in monads. But how to reason about them?
- One idea (HTT/F^*) is to index the monad with a specification:

```
(* No spec *)

val incr : unit \rightarrow ST unit

(* Hoare triples *)

val incr : unit \rightarrow ST unit (requires (\lambda n_0 \rightarrow True))

(ensures (\lambda n_0 r n_1 \rightarrow n_1 = n_0 + 1))

(* Dijkstra's WPs *)

val incr : unit \rightarrow ST unit (\lambda post n_0 \rightarrow post () (n_0 + 1))
```

 Dijkstra monads are a generalization of Dijkstra's predicate transformers to arbitrary effects, and are the bread and butter of F*'s reasoning about effects.

Dijkstra Monad (pure and beautiful)

correctly specifies

Programs (with dirty effects)

Dijkstra Monad (pure and beautiful)

correctly specifies

Programs (with dirty effects)

Problem...

- The **Dijkstra monad** for each effect needs to be hand-crafted, and proven correct.
- This made F^{\star} rigid, in that it had a fixed supply of effects.

Problem...

- The **Dijkstra monad** for each effect needs to be hand-crafted, and proven correct.
- This made F^{\star} rigid, in that it had a fixed supply of effects.
- A fundamental question arises:

What is the relation between the monadic representation for an effect and its Dijkstra monad?

Problem... solution!

- The **Dijkstra monad** for each effect needs to be hand-crafted, and proven correct.
- This made F^{\star} rigid, in that it had a fixed supply of effects.
- A fundamental question arises:

What is the relation between the monadic representation for an effect and its Dijkstra monad?

- Old dog, new trick: Dijkstra monads are a **CPS** transform of the representation monad, allowing **automatic derivation**.
- Simple monadic definition gives correct-by-construction WP calculus for it.

Problem... solution!

- The Dijkstra monad for each effect needs to be hand-crafted, and proven correct.
- This made F^{\star} rigid, in that it had a fixed supply of effects.
- A fundamental question arises:

What is the relation between the monadic representation for an effect and its Dijkstra monad?

- Old dog, new trick: Dijkstra monads are a **CPS** transform of the representation monad, allowing **automatic derivation**.
- Simple monadic definition gives correct-by-construction WP calculus for it.
- Implemented in $F^{\star}...$ now with user-defined effects.
- Huge boost in simplicity and expressiveness of the effect system.

Problem... solution!

• Huge boost in simplicity and expressiveness of the effect system.

- Dijkstra monads are essentially monads over weakest-preconditions (WP).
- A WP is a **predicate transformer** mapping a postcondition on the outputs of a computation to a precondition on its inputs.

- Dijkstra monads are essentially monads over weakest-preconditions (WP).
- A WP is a **predicate transformer** mapping a postcondition on the outputs of a computation to a precondition on its inputs.
- Example: for stateful computations, WPs are of type

$$ST_{wp} t = (t \rightarrow S \rightarrow \mathsf{Type}_0) \rightarrow S \rightarrow \mathsf{Type}_0$$

where t is the result type.

- Dijkstra monads are essentially monads over weakest-preconditions (WP).
- A WP is a **predicate transformer** mapping a **postcondition** on the outputs of a computation to a **precondition** on its inputs.
- Example: for stateful computations, WPs are of type

$$\operatorname{ST}_{wp} t = \begin{bmatrix} (t \to S \to \mathsf{Type}_0) \end{bmatrix} \to \begin{bmatrix} S \to \mathsf{Type}_0 \end{bmatrix}$$

where t is the result type.

- Dijkstra monads are essentially monads over weakest-preconditions (WP).
- A WP is a **predicate transformer** mapping a **postcondition** on the outputs of a computation to a **precondition** on its inputs.
- Example: for stateful computations, WPs are of type

$$\operatorname{ST}_{wp} t = \begin{bmatrix} (t \to S \to \mathsf{Type}_0) \end{bmatrix} \to \begin{bmatrix} S \to \mathsf{Type}_0 \end{bmatrix}$$

where t is the result type.

• F*'s typing judgment gives a WP to each computation:

 $\Gamma \vdash e : ST \ t \ wp$

let incr () = let n = get () in put (n + 1)

let incr () = bind_{st} (get ()) (λ n \rightarrow put (n + 1))

- Turn it into explicitly monadic form

let incr () = bind_{st} (get ()) (λ n \rightarrow put (n + 1))

- Turn it into explicitly monadic form
- Compute a WP by simple type inference

val get : unit \rightarrow ST int getwp

val put : n_1 :int \rightarrow ST unit (setwp n_1)

val bind_{st} : \forall wa wb. ST a wa \rightarrow (x:a \rightarrow ST b (wb x)) \rightarrow ST b (bindwp_{st} wa wb)

let incr () = bind_{st} (get ()) (λ n \rightarrow put (n + 1))

- Turn it into explicitly monadic form
- Compute a WP by simple type inference

val get : unit \rightarrow ST int getwp val put : n₁:int \rightarrow ST unit (setwp n₁) val bind_{st} : \forall wa wb. ST a wa \rightarrow (x:a \rightarrow ST b (wb x)) \rightarrow ST b (bindwp_{st} wa wb)

to get

val incr : unit \rightarrow ST unit (bindwp_{st} getwp (λ n \rightarrow setwp (n + 1)))

let incr () = bind_{st} (get ()) ($\lambda \ n \rightarrow put \ (n + 1)$)

- Turn it into explicitly monadic form
- Compute a WP by simple type inference

val get : unit \rightarrow ST int getwp val put : n₁:int \rightarrow ST unit (setwp n₁) val bind_{st} : \forall wa wb. ST a wa \rightarrow (x:a \rightarrow ST b (wb x)) \rightarrow ST b (bindwp_{st} wa wb)

to get

val incr : unit \rightarrow ST unit (bindwp_{st} getwp (λ n \rightarrow setwp (n + 1))) = val incr : unit \rightarrow ST unit (λ post n₀ \rightarrow post () (n₀ + 1))

let incr () = bind_{st} (get ()) ($\lambda \ n \rightarrow put \ (n + 1)$)

- Turn it into explicitly monadic form
- Compute a WP by simple type inference

val get : unit \rightarrow ST int getwp val put : n₁:int \rightarrow ST unit (setwp n₁) val bind_{st} : \forall wa wb. ST a wa \rightarrow (x:a \rightarrow ST b (wb x)) \rightarrow ST b (bindwp_{st} wa wb)

to get

val incr : unit \rightarrow ST unit (bindwp_{st} getwp (λ n \rightarrow setwp (n + 1))) = val incr : unit \rightarrow ST unit (λ post n₀ \rightarrow post () (n₀ + 1))

$$\begin{array}{rcl} \mathrm{ST}_{wp} \ t &=& S \rightarrow (t \times S \rightarrow \mathsf{Type}_0) \rightarrow \mathsf{Type}_0 \\ \mathrm{returnwp}_{st} \ v &=& \lambda s_0 \ p. \ p \ (v, s_0) \\ \mathrm{bindwp}_{st} \ wp \ f &=& \lambda s_0 \ p. \ wp \ s_0 \ (\lambda vs. \ f \ (\mathbf{fst} \ vs) \ (\mathbf{snd} \ vs) \ p) \\ \mathrm{getwp}_{st} &=& \lambda s_0 \ p. \ p \ (s_0, s_0) \\ \mathrm{setwp}_{st} \ s_1 &=& \lambda _ p. \ p \ ((), s_1) \\ \end{array}$$

$$\begin{array}{rcl} \mathrm{ST} \ t &=& S \rightarrow t \times S \\ \mathrm{return}_{st} \ v &=& \lambda s_0. \ (v, s_0) \\ \mathrm{bind}_{st} \ m \ f &=& \lambda s_0. \ \mathbf{let} \ vs = m \ s_0 \ \mathbf{in} \ f \ (\mathbf{fst} \ vs) \ (\mathbf{snd} \ vs) \\ \mathrm{get} &=& \lambda s_0. \ (s_0, s_0) \\ \mathrm{set} \ s_1 &=& \lambda _ \lambda_ ((), s_1) \end{array}$$

$ST_{wp} t$	=	$S \to (t \times S \to Type_0) \to Type$
returnwp $_{st} v$	=	$\lambda s_0 p. p(v, s_0)$
$\operatorname{bindwp}_{st} wp f$	=	$\lambda s_0 p. wp s_0 (\lambda vs. f(\mathbf{fst} vs))$
$\operatorname{getwp}_{st}$	=	$\lambda s_0 p. p(s_0, s_0)$
setwp _{st} s_1	=	λ p. p ((), s ₁)
		Mars Trans
ST t	=	$S \rightarrow t \times S$
$\operatorname{return}_{st} v$	=	$\lambda s_0. (v, s_0)$
$\operatorname{bind}_{st} m f$	=	λs_0 . let $vs = m \ s_0$ in $f(\mathbf{fst} \ v)$
get	=	$\lambda s_0. (s_0, s_0)$
set s_1	=	$\lambda\$ ((), s_1)

Can be derived automatically!

- We introduce two calculi: ${\rm DM}$ and a new ${\rm F}^{\star}$ formalization called ${\rm EMF}^{\star}.$

- We introduce two calculi: ${\rm DM}$ and a new F^{\star} formalization called ${\rm EMF}^{\star}.$
- DM: simply-typed with an abstract base monad au (and somewhat restricted)
 - Used to define monads, actions, lifts
- EMF*: dependently-typed, allows for user-defined effects

- We introduce two calculi: ${\rm DM}$ and a new ${\rm F}^{\star}$ formalization called ${\rm EMF}^{\star}.$
- DM: simply-typed with an abstract base monad au (and somewhat restricted)
 - Used to define monads, actions, lifts
- EMF*: dependently-typed, allows for user-defined effects
- Two translations from well-typed ${\rm DM}$ terms to ${\rm EMF}^{\star}$
 - *-translation: gives specification (selective CPS)
 - Elaboration: gives implementation (essentially an identity)

- We introduce two calculi: ${\rm DM}$ and a new ${\rm F}^{\star}$ formalization called ${\rm EMF}^{\star}.$
- DM: simply-typed with an abstract base monad au (and somewhat restricted)
 - Used to define monads, actions, lifts
- EMF*: dependently-typed, allows for user-defined effects
- Two translations from well-typed DM terms to EMF*
 - *-translation: gives specification (selective CPS)
 - Elaboration: gives implementation (essentially an identity)
- *-translation gives a correct Dijkstra monad for elaborated terms.
 Examples: state, exceptions, continuations...

Pure in EMF^{\star}

- Pure is the only primitive EMF^{*} effect.
- A WP for Pure *t* is of type

 $(t \to \mathsf{Type}_0) \to \mathsf{Type}_0$

Pure in EMF^{\star}

- Pure is the only primitive EMF* effect.
- A WP for Pure *t* is of type

$$(t \to \mathsf{Type}_0) \to \mathsf{Type}_0$$

• The Dijkstra monad for Pure is **exactly** the continuation monad.

Pure in $\operatorname{EMF}^{\star}$

- Pure is the only primitive EMF* effect.
- A WP for Pure *t* is of type

$$(t \to \mathsf{Type}_0) \to \mathsf{Type}_0$$

• The Dijkstra monad for Pure is **exactly** the continuation monad.

Lemma (Correctness of Pure)

If $\vdash e$: Pure t wp and \vDash wp p, then $e \rightsquigarrow^* v$ s.t. $\vDash p v$.

Reasoning about ST

• Say we have a term *e* such that

 $e \; : \; S \to t \times S$

Reasoning about ST

• Say we have a term e such that

$$e \; : \; S \to t \times S$$

• From logical relation, we get

$$\underline{e} : s_0: S \to \text{Pure} (t \times S) (e^* s_0)$$

Reasoning about ST

• Say we have a term e such that

$$e \; : \; S \to t \times S$$

• From logical relation, we get

$$\underline{e} : s_0: S \to \text{Pure } (t \times S) (e^* s_0)$$

• From previous and correctness of Pure, we get

Corollary (Correctness of ST)

 $\textit{If} \vdash e: S \rightarrow t \times S, \textit{ and} \vDash e^{\star} s_0 \textit{ p, then } \underline{e} s_0 \rightsquigarrow^{*} (v, s) \quad \textit{s.t.} \quad \vDash p (v, s).$

Relating effects

• In DM, we can also provide a lift between two monads.

$$\begin{split} \mathsf{ST} \ \mathsf{t} &= \mathsf{S} \to \mathsf{t} \times \mathsf{S} & \mathsf{EXNST} \ \mathsf{t} &= \mathsf{S} \to (1+\mathsf{t}) \times \mathsf{S} \\ \mathsf{lift} & : & \mathsf{ST} \ \mathsf{t} \to \mathsf{EXNST} \ \mathsf{t} \\ \mathsf{lift} \ \mathsf{m} &= & \lambda \mathsf{s}_0. \ \mathbf{let} \ \mathsf{vs} &= \mathsf{m} \ \mathsf{s}_0 \ \mathbf{in} \ (\mathbf{inr} \ (\mathbf{fst} \ \mathsf{vs}), \mathbf{snd} \ \mathsf{vs}) \end{split}$$

Relating effects

• In DM, we can also provide a lift between two monads.

$$\begin{split} \mathsf{ST} \ \mathsf{t} &= \mathsf{S} \to \mathsf{t} \times \mathsf{S} & \mathsf{EXNST} \ \mathsf{t} &= \mathsf{S} \to (1+\mathsf{t}) \times \mathsf{S} \\ \mathsf{lift} & : & \mathsf{ST} \ \mathsf{t} \to \mathsf{EXNST} \ \mathsf{t} \\ \mathsf{lift} \ \mathsf{m} &= & \lambda \mathsf{s}_0. \ \mathbf{let} \ \mathsf{vs} = \mathsf{m} \ \mathsf{s}_0 \ \mathbf{in} \ (\mathbf{inr} \ (\mathbf{fst} \ \mathsf{vs}), \mathbf{snd} \ \mathsf{vs}) \end{split}$$

• It will be translated to a correct Dijkstra monad lift.

liftwp : $ST_{wp} t \rightarrow EXNST_{wp} t$ liftwp $wp = \lambda s_0 p. wp s_0 (\lambda vs. p (inr (fst vs), snd vs))$

Besides correctly specifying programs, the generated WPs enjoys some nice properties

The *-translation preserves equality

Besides correctly specifying programs, the generated WPs enjoys some nice properties

- The *-translation preserves equality
 - Monads mapped to Dijkstra monads
 - Lifts mapped to Dijkstra lifts
 - Laws about actions preserved

Besides correctly specifying programs, the generated WPs enjoys some nice properties

- The *-translation preserves equality
 - Monads mapped to Dijkstra monads
 - Lifts mapped to Dijkstra lifts
 - Laws about actions preserved
- e^* is **monotonic**: it maps weaker postconditions to weaker preconditions.

$$(\forall x. p_1 \ x \implies p_2 \ x) \implies e^\star \ p_1 \implies e^\star \ p_2$$

• e^* is **conjunctive**: it distributes over \land and \forall .

$$e^{\star} (\lambda x. p_1 x \wedge p_2 x) \iff e^{\star} p_1 \wedge e^{\star} p_2$$

Besides correctly specifying programs, the generated WPs enjoys some nice properties

- The *-translation preserves equality
 - Monads mapped to Dijkstra monads
 - Lifts mapped to Dijkstra lifts
 - Laws about actions preserved
- e^* is **monotonic**: it maps weaker postconditions to weaker preconditions.

$$(\forall x. p_1 \ x \implies p_2 \ x) \implies e^\star \ p_1 \implies e^\star \ p_2$$

• e^* is **conjunctive**: it distributes over \land and \forall .

$$e^{\star} (\lambda x. p_1 x \wedge p_2 x) \iff e^{\star} p_1 \wedge e^{\star} p_2$$

• These properties together ensure that any DM monad provides a correct Dijkstra monad, that's also usable within the F* compiler.

Conclusions and further work

- We show a formal connection between WPs and CPS, with good properties.
- New version of F* with user-defined effects: greatly broadens its applications and reduces proof obligations.
- Extrinsic reasoning; primitive effects: details in paper.

Conclusions and further work

- We show a formal connection between WPs and CPS, with good properties.
- New version of F^{*} with user-defined effects: greatly broadens its applications and reduces proof obligations.
- Extrinsic reasoning; primitive effects: details in paper.

Further work:

- Exciting new opportunities in verification: probabilistic computation, concurrency, cost analysis...
- Improve the expresiveness of DM.

Conclusions and further work

- We show a formal connection between WPs and CPS, with good properties.
- New version of F^{*} with user-defined effects: greatly broadens its applications and reduces proof obligations.
- Extrinsic reasoning; primitive effects: details in paper.

Further work:

- Exciting new opportunities in verification: probabilistic computation, concurrency, cost analysis...
- Improve the expresiveness of DM.

Thank you!

Thank you!