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Combining dependent types and effects

• Known hard problem, various solutions (Ynot/HTT, Idris, Trellys/Zombie, F⋆)

• Common approach: encapsulating effectul programs in monads.
But how to reason about them?

• One idea (HTT/F⋆) is to index the monad with a specification:
(* No spec *)
val incr : unit →ST unit
(* Hoare triples *)
val incr : unit →ST unit (requires (λ n0 →True))

(ensures (λ n0 r n1 → n1 = n0 + 1))
(* Dijkstra’s WPs *)
val incr : unit →ST unit (λ post n0 → post () (n0 + 1))

• Dijkstra monads are a generalization of Dijkstra’s predicate transformers to
arbitrary effects, and are the bread and butter of F⋆’s reasoning about effects.
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Programs
(with dirty effects)

Dijkstra Monad
(pure and beautiful)

correctly
specifies

✓
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Problem...

• The Dijkstra monad for each effect needs to be hand-crafted, and proven correct.
• This made F⋆ rigid, in that it had a fixed supply of effects.

• A fundamental question arises:

What is the relation between the monadic representation
for an effect and its Dijkstra monad?

• Old dog, new trick: Dijkstra monads are a CPS transform of the representation
monad, allowing automatic derivation.

• Simple monadic definition gives correct-by-construction WP calculus for it.
• Implemented in F⋆... now with user-defined effects.
• Huge boost in simplicity and expressiveness of the effect system.
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A reminder on WPs

• Dijkstra monads are essentially monads over weakest-preconditions (WP).
• A WP is a predicate transformer mapping a postcondition on the outputs of a

computation to a precondition on its inputs.

• Example: for stateful computations, WPs are of type

STwp t = (t → S → Type0) → S → Type0

where t is the result type.
• F⋆’s typing judgment gives a WP to each computation:

Γ ⊢ e : ST t wp
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Verifying code

let incr () = let n = get () in put (n + 1)

• Turn it into explicitly monadic form
• Compute a WP by simple type inference

val get : unit →ST int getwp
val put : n1:int →ST unit ( setwp n1)
val bindst : ∀wa wb. ST a wa → (x:a → ST b (wb x)) →ST b ( bindwpst wa wb)

to get
val incr : unit → ST unit (bindwpst getwp (λ n → setwp (n + 1)))

= val incr : unit → ST unit (λ post n0 → post () (n0 + 1))
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Primitive specs

STwp t = (t → S → Type0) → S → Type0
returnwpst v = λp s0. p v s0
bindwpst wp f = λp s0. wp (λv s1. f v p s1) s0
getwpst = λp s0. p s0 s0
setwpst s1 = λp _. p () s1

ST t = S → t × S
returnst v = λs0. (v, s0)
bindst m f = λs0. let vs = m s0 in f (fst vs) (snd vs)
get = λs0. (s0, s0)
set s1 = λ_. ((), s1)

Can be derived automatically!
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Formalization

• We introduce two calculi: dm and a new F⋆ formalization called emf⋆.

• dm: simply-typed with an abstract base monad τ (and somewhat restricted)
• Used to define monads, actions, lifts

• emf⋆: dependently-typed, allows for user-defined effects
• Two translations from well-typed dm terms to emf⋆

• ⋆-translation: gives specification (selective CPS)
• Elaboration: gives implementation (essentially an identity)

• ⋆-translation gives a correct Dijkstra monad for elaborated terms.
Examples: state, exceptions, continuations...
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e : FC e⋆
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Pure in emf⋆

• Pure is the only primitive emf⋆ effect.
• A WP for Pure t is of type

(t → Type0) → Type0

• The Dijkstra monad for Pure is exactly the continuation monad.
Lemma (Correctness of Pure)
If ⊢ e : Pure t wp and ⊨ wp p, then e⇝∗ v s.t. ⊨ p v.
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Reasoning about ST

• Say we have a term e such that

e : S → t × S

• From logical relation, we get

e : s0:S → Pure (t × S) (e⋆ s0)

• From previous and correctness of Pure, we get
Corollary (Correctness of ST)
If ⊢ e : S → t × S, and ⊨ e⋆ s0 p, then e s0 ⇝∗ (v, s) s.t. ⊨ p (v, s).
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Relating effects

• In dm, we can also provide a lift between two monads.

ST t = S → t × S EXNST t = S → (1 + t)× S

lift : ST t → EXNST t
lift m = λs0. let vs = m s0 in (inr (fst vs), snd vs)

• It will be translated to a correct Dijkstra monad lift.

liftwp : STwp t → EXNSTwp t
liftwp wp = λs0 p. wp s0 (λvs. p (inr (fst vs), snd vs))
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Properties of the translations
Besides correctly specifying programs, the generated WPs enjoys some nice properties

• The ⋆-translation preserves equality

• Monads mapped to Dijkstra monads
• Lifts mapped to Dijkstra lifts
• Laws about actions preserved

• e⋆ is monotonic: it maps weaker postconditions to weaker preconditions.

(∀x.p1 x =⇒ p2 x) =⇒ e⋆ p1 =⇒ e⋆ p2

• e⋆ is conjunctive: it distributes over ∧ and ∀.

e⋆ (λx. p1 x ∧ p2 x) ⇐⇒ e⋆ p1 ∧ e⋆ p2

• These properties together ensure that any dm monad provides a correct Dijkstra
monad, that’s also usable within the F⋆ compiler.
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Conclusions and further work

• We show a formal connection between WPs and CPS, with good properties.
• New version of F⋆ with user-defined effects:

greatly broadens its applications and reduces proof obligations.
• Extrinsic reasoning; primitive effects: details in paper.

Further work:
• Exciting new opportunities in verification:

probabilistic computation, concurrency, cost analysis...
• Improve the expresiveness of dm.

Thank you!
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