everparse

Verified Parser Generation
for Security Critical Applications
Nik Swamy

OPLSS 20201
https://project-everest.github.io/everparse/

Tahina Ramananandro, Aseem Rastogi, Tej Chajed, Antoine Delignat-Lavaud, Cedric Fournet,
Nadim Kobeissi, Guido Martinez, Jonathan Protzenko, Irina Spiridonova

https://project-everest.github.io/everparse/

Incorrect handling of attacker-controlled inputs

=» Leading cause of software security attacks

2020 CWE Top 25 Most Dangerous Software Weaknesses

Top 25 Analysis Methodology Scoring Metrics On the Cusp Limitations Remapping

Introduction

The 2020 Common Weakness Enumeration (CWE™) Top 25 Most Dangerous Software Weaknesses (CWE Top 25) is a demonstrative list of the most common and impaci
the previous two calendar years. These weaknesses are dangerous because they are often easy to find, exploit, and can allow adversaries to completely take over a sys
an application from working. The CWE Top 25 is a valuable community resource that can help developers, testers, and users — as well as project managers, security res
provide insight into the most severe and current security weaknesses.

To create the 2020 list, the CWE Team leveraged Common Vulnerabilities and Exposures (CVE®) data found within the National Institute of Standards and Technology (I
Database (NVD), as well as the Common Vulnerability Scoring_System (CVSS) scores associated with each CVE. A formula was applied to the data to score each weakne
and severity.

The CWE Top 25

Below is a brief listing of the weaknesses in the 2020 CWE Top 25, including the overall score of each.

‘ Rank H iD H Name H Score ‘
[1] (CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 46.82
[2] ||[CWE-787 |Out-of-bounds Write 46.17

| [3] |CWE-20 |improper Input Validation | 33.47 |

| [4] |CWE-125 |Out-of-bounds Read | 26.50 |

Incorrect handling of attacker-controlled inputs

Dire in low-level code where input validation and parsing code is

Hand written in C/C++
- for performance
- for deployability (e.g, in kernel)

- for legacy

And errors are catastrophic due to a lack of memory safety

Incorrect handling of attacker-controlled inputs

In many guises, across the stack

Remote adversary
Well-crafted packet GE

Untrusted Network

Unenlightened

Windows Linux

Also deep within critical systems ! | !
when traversing trust boundaries

Bad formats
U

IN many guises, across the stack |sapsrserimpementsion

1. Hand-rolled data-exchange formats, hand-rolled parsers
e What could possibly go wrong?

Incorrect handling of attacker-controlled inputs

2. Standardized formats, hand-rolled parsers
* Windows 10 Bad Neighbor: TCP/IP ICMPv6 Router Advertisement

Improper parsing of variable length inputs leading to remote code execution/BSOD

. Heartbleed:

Improper parsing of variable length input leading to information disclosure

3. Standardized formats: buggy formats, buggy parsers
. E.g., Malleability: leading to crypto vulnerabilities
. PKCS #1 signature forgery, Bitcoin transaction malleability

[1 - ° 1 - 1 ~

Preventative Measures) m h a n d - rO ‘ | e d

It is our policy that any time a security problem is found, we will not only fix the problem, but also

[]
implement new measures to prevent the class of problems from occurring again. To that end, I O n S

here’s what we’re doing doing to avoid problems like these in the future:

1. A fuzz test of each pointer type has been added to the standard unit test suite. }neration for pa rsing and Serializing

2. We will additionally add fuzz testing with American Fuzzy Lop to our extended test suite.

3. In parallel, we will extend our use of template metaprogramming for compile-time unit
analysis (kj::Quantity in kj/units.h) to also cover overflow detection (by tracking the maximum
size of an integer value across arithmetic expressions and raising an error when it overflows).
More on this below.

4, We will continue to require that all tests (including the new fuzz test) run cleanly under
Valgrind before each release.

5. We will commission a professional security review before any 1.0 release. Until that time, we
continue to recommend against using Cap’n Proto to interpret data from potentially-malicious

sources.

| am pleased to report that measures 1, 2, and 3 all detected both integer overflow/underflow

problems, and AFL additionally detected the CPU amplification problem. News

Security Advisory - And how to catch integer overflows
Inte ger ove rflow bu gs with template metaprogramming

As the installation page has always stated, | do not yet recommgﬁa‘“asing Cap’n Proto’s C++ library

for handling possibly-malicious input, and will not recommend it until it undergoes a formal

Isecurity review. That said, security is obviously a high priority for the project. The security of Cap’n I

Plus, many legacy formats remain

=. Microsoft | Docs Documentation Learn Q&A Code Samples

Designed for
Windows Hardware Developer Explore ~ Downloads ~ Events Samples Support

* Compactness

Docs / Windows / Windows Drivers / Driver Technologies / Network

* ABI compatibility 2 fiter by e Introduction to Remote NDIS (RNDI

P e et Bl ' e e
Network C .
) =. Microsoft | Docs Documentation Learn Q&A Code Samples
® “““ap able > Introductis
> NDIS versi Wi =. Microsoft | Docs Documentation Learn Q&A Code Samples
> NDIS Core
Doc
 Scalable h Window =. Microsoft | Docs Documentation Learn Q&A Code Samples

N Docs / W

Se ri a | izatio n. m e m C py Windows Hardware Developer Explore v Downloads v Events Samples Support

v N8 Filter Docs / Windows / Windows Drivers / Driver Technologies / Network

Parsing: reinterpret _cast<T> . validate sl Ty NDIS driver types

Introc Network Driver Design Guide 11/26/2018 - 2 minutes to read - § @

Road ~ i i
Introduction to Network Drivers The Network Driver Interface Specification (NDIS) library

Usine Introduction to Network Drivers Topics specifies a standard interface between layered network d
Roadmap for Developing NDIS Drivers hardware from upper-level drivers, such as network transj

> Using the Network Driver Design Guide network drivers, including pointers to functions, handles,

Standardized formats have their
challenges too

Wire formats prescribed by RFCs in a semi-formal

notation https://tools.ietf.org/html/rfc8446

Or In Other notations Ilke ASN]‘ uintl6 ProtocolVersion; opaque Random[32]; uint8 CipherSuite[2]
struct {
ProtocolVersion legacy version = 0x0303;
H Rand dom;

Are the formats well-designed? ancor random o

opaque legacy session 1id<0..32>;
° E.g., non-malleable? CipherSuite cipher suites<2..2716-2>;

opaque legacy compression methods<l..2"8-1>;
Extension extensions<8..2"16-1>;

} ClientHello;

Are their parsers and serializers correctly implemented?

https://tools.ietf.org/html/rfc8446

everparse

A Mathematically Proven Low-level Parser Generator

For a variety of formats, ranging from mmap’able binary wire formats to semi-formal RFC specs

Our goal
e Abolish writing low-level binary format parsers by hand
* Instead, specify formats in a high-level declarative notation
* Auto-generate performant low-level code to parse binary messages
* Integrate seamlessly with existing codebases in a variety of languages (C, C++, Rust, ...)

With formal proofs that:
* Formats enjoy various good properties, e.g., non-malleability
* Generated code is

* Memory safe (no access out of bounds, no use after free etc.)

* Arithmetically safe (no overflow/underflow)

* Functionally correct (that it parses exactly those messages that conform to the high-level spec)
* Free from double-fetches, so safe against time-of-check/time-of-use bugs

https://project-everest.github.io/everparse/

https://project-everest.github.io/everparse/

Hello. 3d:
Starting from a high-level language
f f t typedef struct Sample(mutable PUINT32 out) {
of message formats UINT32 MajorVersion { MajorVersion = 1 };
UINT32 MinorVersion { MinorVersion = 0 };
. . UINT32 Min;
EverParse auto-generates parsing code that is e
UINT32 Max { Min <= Max }
o Safe : ; r = Max}
orma
} SAMPLE, *PSAMF Hid
* Correct descriptions

* Fast (zero-copy) EVEIPArsE =

Correctness: formal
parse (serialize msg) = msg specification

valid msg ==> serialize (parse msg) = msg low-level verified libraries
implementation for combinators

A type-theory-based
Performa proof assistant and
ASN. programming language

Safe high-performance C code

https://fstar-lang.org/

everparse

Hardening critical applications in C/C++

Since spring 2020

Every network packet passing through Microsoft Hyper-V is validated by EverParse
Hyper-V: Core isolation technology of the Microsoft Azure cloud
Multiple layers of headers, many verified already, further layers in progress

Custom binary wire formats designed to also be ABI-compatible and mmap’able

Verified parsers and serializers for non-malleable wire formats in verified F* applications
TLS 1.3 record and handshake messages

QUIC record layer messages

DICE Secure Measured Boot for loT devices, ASN.1

Bitcoin transaction log validation

All producing verified high-performance C code

Hardening critical applications in C/C++

A diversity of existing wire formats
o Designed for efficiency, compactness and ABI compatibility

> So that parsing and serialization can be done by memcpy/reinterpret_cast

We designed a new specification language to capture a wide variety of these formats
Produce functionally correct, memory safe, double-fetch free validators of these formats in C

And interpose our validators at the attack surface to ensure that ill-formed data doesn’t reach
the rest of the system

Dependent Data Descriptions in 3D:
A source language of message formats

Augmenting C data types with constraints, variable-length structures, and actions

Refinement types for data validity constraints

typedef struct SAMPLE {

UINT32 MajorVersion { MajorVersion = 1 };
UINT32 MinorVersion { MinorVersion = @ };
UINT32 Min;
UINT32 Max { Min <= Max }

} SAMPLE;

Augmenting C data types with constraints, variable-length structures, and actions

Contextually tagged unions with casetype

typedef union _MessageUnion { typedef struct Message {
Init init; UINT32 tag;
MessageUnion message;
Query query,; } Message;
Halt halt;

} MessageUnion;

Augmenting C data types with constraints, variable-length structures, and actions

Contextually tagged unions with casetype

casetype MessageUnion(UINT32 tag) { typedef struct Message {
switch(tag) { UINT32 tag;
case INIT MSG: MessageUnion(tag) message;
Init init; } Message;

case QUERY_MSG:

Query query,;
case HALT MSG:

Halt halt;
}

} MessageUnion;

Augmenting C data types with constraints, variable-length structures, and actions

Structures with variable-length fields

typedef struct VLDATA {
UINT32 ByteLength;

SAMPLE Samples|[:byte-size BytelLength]
} VLDATA;

Augmenting C data types with constraints, variable-length structures, and actions

Structures with variable-length fields

typedef struct VLDATA(UINT32 TotalMessagelength) {
UINT32 BytelLength;
UINT32 Offset
{ is_range okay(TotalMessagelLength, Offset, BytelLength) &&
Offset >= sizeof(this) };

UINTS Padding|[:byte-size Offset - sizeof(this)]
SAMPLE Samples[:byte-size Bytelength]
} VLDATA;

Augmenting C data types with constraints, variable-length structures, and actions

Imperative actions
for selective parsing and further validation

typedef struct Sample(mutable PUINT32 out) {

UINT32 MajorVersion { MajorVersion = 1 };
UINT32 MinorVersion { MinorVersion = 0 };
UINT32 Min;

UINT32 Max { Min <= Max }

{:on-success *out = Max}
} SAMPLE;

Augmenting C data types with constraints, variable-length structures, and actions

Imperative actions
for selective parsing and further validation

R LR SizeOfAs -------------- >|<---- sizeof(B_ENTRY) * (i_@ + +1in) --->
| AENTRY { i@ } | ... | ALENTRY { i_n } | B_ENTRY | | B_ENTRY |
typedef struct A(mutable UINT32* accum) { typedef struct C(UINT32 TotallLength,
mutable UINT32* accum) {
UINT32 SizeOfAs;
UINT32 NumBEntries A(accum) As[:byte-size SizeOfAs];
{:on-success accum += NumBEntries } B(accum) Bs[:byte-size TotallLength -SizeOfAs - 4]
{:on-success return (*accum == 0) }
} A > G

typedef struct B(mutable UINT32* expectedB)

{ .. {:on-success expectedB--} } B;

Generated C code, after verification

e C code aims to be human- Insert a call to CheckPacket on attack surface
readable, human patchable

BOOLEAN
* Propagates comments from CheckPacket (
source spec uint32 t _ PacketlLength,
* Generates predictable uint32_t __ HeaderlLength,
descriptive names uint32 t *dataOffset,

uint32 t *datalength,

uint32 t *perPacketInfoOffset,
Theorems: uint32_t *perPacketInfolength,
uint8 t *base,

e CheckPacket returns true if and only if the bytes in :
uint32 t len);

*base contains a valid representation of the format
specification for a Packet
* CheckPacket reads no byte of *base more than once
* Mutates at most the out parameters, dataOffset ...
perPacketinfoLength in a type-correct manner

Experience, spec archaeology, ...

* Developed specifications for 4 core message formats for various virtualized device
* Ultra-high value scenarios: Security bugs here are catastrophic for the entire cloud

* Layered protocols, with incremental parsing
* Many more to come

* Totaling around 6000 lines of specification in 3d
* Automatically generating ~30KLOC of verified C code

* Working on a clang-based frontend to better integrate 3d specs with C headers

 Highly performance sensitive in certain scenarios
* Target: Less than 2% measured performance overhead

* Result: Overhead is unmeasurable
* In some cases, our code is more efficient, since we can aggressively avoid copies that were previously incurred due to defenses against double fetches

* Main challenge: Discovering a specification
* Proprietary specs, intentionally divergent from official standards from which they were derived

* Backward compatibility & complex testing matrices

Using EverParse with Verified F*
Applications

TLS (miTLS)
o Verified TLS secure channel with formal security model (IEEE S&P 2017)
o Memory-safe, functionally correct, secure
o Handshake verification in progress

o USENIX Security 2019: TLS handshake message formats

QUIC (EverQUIC)
o Verified QUIC record layer with formal security model

o Memory-safe, functionally correct, side-channel resistant, secure
o |EEE S&P 2021 (to appear): QUIC packet format

DICE/RIoOT (DICE*)

o Verified measured boot for embedded devices (secured boot with measurements)
o Memory-safe, functionally correct, side-channel resistant
o Submitted: ASN.1 X.509 certificates

Performance Results

QD F* LoC Verify Extract C LoC Obj.
TLS 1601 70k 46m 25m 190k 717KB
Bitcoin 31 2k 2m 2m 2k 8KB
PKCS1 117 5k 3m 3m 4k 26KB
LowParse 33k 4m 2m 0.2k 1KB

Throughput ratio (higher is better)

14 1,859 MB/s
12
Takeaway: 10
* Scales to large data formats °®
. 6 . .
* Code produced is fast , ol Bitcoin M op/s
miTLS Core mbedTLS
21,864 MB/s 2084 MB/s 141 MB/ 31 Mop/
. mm BN]]
TLS Handshake Validation Bitcoin DeserializeBlock PKCS1 Encode

Parser and Serializer Specifications

With parser refinement:

let parser (t: Type) = (p: bytes - option (t x N) { * Injectivity
(b1 bZ2: bytes) . match p bl, p b2 with
| Some (x1, lenl), Some (x2, len2) -> And more:
X1 = X2 ==> slice bl 0 lenl = slice b2 0 Ten2 * Consumption bounds
| _ -> True Strong prefix property
1)) e Etc.

Controlled by metadata

let serializer (#t: Type) (p: parser t) = (f: t - bytes {
(x: t) . p (f x) = some (x, length (f x))
})

Validators

type validator (#t: Type) (p: parser t) =
(b: bytes) -
(res: bool {
res = true & Ssome? (p b)

)

Not compositional!

Validators

type validator (#t: Type) (p: parser t) =
(b: bytes) -
(res: option nat {
match p b with
| None = res = None
| Some (_, consumed) = res = Some consumed

P

What are bytes in C?

Validators

type validator (#t: Type) (p: parser t) =
(b: buffer UInt8.t) -
(len: UInt32.t { len = length b }) -
ST (option UInt32.t)
(requires A mem > live mem b)
(ensures A mem res mem’ =
modifies loc_none mem mem’ /\
match p (as_seq mem b), res with
| None, None = True
| Some (_, consumed), Some consumed’ - consumed’ = consumed
| _ = False

)

Validators

type validator (#t: Type) (p: parser t) =
(b: buffer UInt8.t) -
(len: UInt32.t { len = length b }) -
ST (option UInt32.t)
(requires A mem -> -4
(ensures A mem res-mem’ Precondition
modifies loc_none mem <
match p (as_seq mem b), res
| None, None = True
| Some (_, consumed), Some consumed’ - cons
| _ > False Postcondition

)

Va ‘ | d ato I F* abstraction for

uint8 t *

type validator Type) (p: parse Memory safety: b is not a

(b: buffer Int8:t) > dangling pointer
(len: UInt32.t { len = length b
ST (option UInt32.t)
(requires A mem -> live mem b)
(ensures A mem res mem’ =
modifies loc_none mem mem’ /\
match as_seq m
| None, Non®
| Some (_, con
| _ = False

Proof model of the buffer
contents

Some consumed’ =

)

Memory footprint: what is
modified, deallocated, etc.

Example F* Parser specification

type emp1oyee

Il
~

struct {
name— emp.oyee name; employee name name;
salary : UIntl6.t; uintl6 salary;
1 } Employee;

type employg
yp P parse_pair: parser t1 = parser t2 = parser (t1 * t2)
let emp1oyee

parse_pair employee_name_parser uintl6_parser

let rewrite_employee (x: employee') : employee =
let (name,
{ name =

parse_rewrite: parser t1 =2 (t1 = t2) = parser t2

Tet employee g
parse_rewrite emp]oyee _parser rewrite_employee

Generated F* Validator implementation

let employee'_validator : validator employee’_parser =
validate_pair employee_name_validator uintl6_validator

let employee_validator : validator employee_parser =
validate_rewrite employee'_validator rewrite_employee

type employee’ = (employee_name x UIntl6.t)

lTet employee'_parser : parser employee’ =
parse_pair employee_name_parser uintl6_parser

Tet rewrite_employee (x: employee') : employee =
Tet (name, salary) = x in
{ name = name; salary = salary; }

Tet employee_parser : parser employee =
parse_rewrite employee'_parser rewrite_employee

Generated C code for Validator

type slice = {
hase: buffer UInt8.t;
len: UInt32.t { len < length b /\ len < max_length };

—struct—)

uint8_t *base; : : iy i 1
. . et employee'_validator : validator employee_parser =
Ui nt32—t len ’ validate_pair employee_name_validator uintl6_validator

LowParse_Slice_slice;
} ’ let employee_validator : validator clientHello_parser =
validate_rewrite employee'_validator rewrite_employee

uint32_t Employee_employee_validator(LowParse_Slice_slice input, uint32_t pos)

{

uint32_t posl = Employee_name_employee_name_validator
(posl > LOWPARSE_LOW_BASE_VALIDATOR_MAX_LENGTH)
posl;

(input.len - posl ' _t)2U)
LOWPARSE_LOW_BASE_VALIDATOR_ERROR_NOT_ENOUGH_DATA;

uintl6_validator inlined

validate_pair and

validate_rewrite inlined

Bang for the buck: Focus on parsing, protect the attack surface

T

. EverParse
Functional ;

. Automated with
correctness strongest guarantees
& security but on a limited domain

Type safety

Memory safety

Strength of safety guarantees

Bounds C++ span
checking Manual bounds
checking,

existing

Program proof
New language, high
expertise required,
but strongest
guarantees

Acyclic structures —
Ty

Rust

New language,

memory safety,

data race freedom,

unsafe code
Checked C
New toolchain,
global spatial safety

-~ Assertion
checking, subject
to coverage

Linters, style checkers,
bug finders

General-purpose
programming

Fuzzing
Input data C”tofr_"?;'c
validation Hg-TIncine,

no guarantees
& access

Domain of applicability

