
1/26

Verifying Relations Between F* Programs

Nik Swamy

OPLSS 19

2/26

Relational Verification

Relating multiple programs,
Or multiple executions of a single program:
▶ Program equivalence, e.g., correctness of optimizations
▶ Program refinement
▶ Security properties, including hyper-properties like

non-interference
▶ . . .

This talk based on A Monadic Framework for Relational
Verification, CPP 2018

3/26

Effects: A Central Difficulty in Relational Verification

▶ Relations between pure programs are ... relatively easy.
▶ But, how to even state relations between effectful programs?

▶ Many custom logics and tools to support stating and proving
relations between effectul programs.
▶ Benton (Relational Hoare Logic),
▶ Barthe at al (Probabilistic RHL, EasyCrypt),
▶ Type systems for information flow control (many)
▶ . . .

3/26

Effects: A Central Difficulty in Relational Verification

▶ Relations between pure programs are ... relatively easy.
▶ But, how to even state relations between effectful programs?
▶ Many custom logics and tools to support stating and proving

relations between effectul programs.
▶ Benton (Relational Hoare Logic),
▶ Barthe at al (Probabilistic RHL, EasyCrypt),
▶ Type systems for information flow control (many)
▶ . . .

4/26

Main Idea of this Work
(dead simple)

▶ Program effectful computations in an abstract, monadic style
• Abstraction enables effects to be compiled primitively, e.g.,

state with destructive updates

▶ Reason about effectful computations by revealing their pure,
monadic representations

• Reduce relating effectful computations to relating pure
functions.

4/26

Main Idea of this Work
(dead simple)

▶ Program effectful computations in an abstract, monadic style
• Abstraction enables effects to be compiled primitively, e.g.,

state with destructive updates
▶ Reason about effectful computations by revealing their pure,

monadic representations
• Reduce relating effectful computations to relating pure

functions.

5/26

A basic example

Consider proving these two stateful, ML programs equivalent:
let rec sum_up r lo hi =
if lo ̸= hi then (r := r + lo ; sum_up r (lo+1) hi)

let rec sum_down r lo hi =
if lo ̸= hi then (r := r + hi ; sum_down r lo (hi−1))

▶ Both programs add the same value to the reference r
▶ But they compute it in a different order

6/26

A basic example: Attempt 1

Consider proving these two stateful, ML programs equivalent:
let rec sum_up r lo hi =
if lo ̸= hi then (r := r + lo ; sum_up r (lo+1) hi)

let rec sum_down r lo hi =
if lo ̸= hi then (r := r + hi ; sum_down r lo (hi−1))

Separate unary, functional correctness proofs
▶ Prove them functionally correct separately, e.g., using some

kind of Floyd-Hoare logic
▶ And prove that their pure functional specs are equivalent

▶ But, this is tedious: required writing separate functional specs
▶ And this style of proof may not always be possible

• Not every hyper-property can be expressed as a collection of
unary properties

6/26

A basic example: Attempt 1

Consider proving these two stateful, ML programs equivalent:
let rec sum_up r lo hi =
if lo ̸= hi then (r := r + lo ; sum_up r (lo+1) hi)

let rec sum_down r lo hi =
if lo ̸= hi then (r := r + hi ; sum_down r lo (hi−1))

Separate unary, functional correctness proofs
▶ Prove them functionally correct separately, e.g., using some

kind of Floyd-Hoare logic
▶ And prove that their pure functional specs are equivalent
▶ But, this is tedious: required writing separate functional specs
▶ And this style of proof may not always be possible

• Not every hyper-property can be expressed as a collection of
unary properties

7/26

A basic example: Attempt 2

Consider proving these two stateful, ML programs equivalent:
let rec sum_up r lo hi =
if lo ̸= hi then (r := r + lo ; sum_up r (lo+1) hi)

let rec sum_down r lo hi =
if lo ̸= hi then (r := r + hi ; sum_down r lo (hi−1))

Relate the monadic representations of the stateful computations
▶ Prove sum_up r lo hi ∼ sum_dn r lo hi
▶ Where c0 ∼ c1 relates mem -> a * mem pure computations

• i.e., relating the monadic representations of c0, c1.

8/26

Applying this approach to relational verification in F∗

A recipe with 5 main ingredients:

▶ Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

▶ A (unary) Hoare-style program logic
▶ Monadic reification, making effectul computations pure
▶ A rich dependently typed logic, well-suited to reasoning by

computation about pure computations
▶ Semi-automated proofs, by encoding to SMT

8/26

Applying this approach to relational verification in F∗

A recipe with 5 main ingredients:

▶ Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

▶ A (unary) Hoare-style program logic
▶ Monadic reification, making effectul computations pure
▶ A rich dependently typed logic, well-suited to reasoning by

computation about pure computations
▶ Semi-automated proofs, by encoding to SMT

8/26

Applying this approach to relational verification in F∗

A recipe with 5 main ingredients:

▶ Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

▶ A (unary) Hoare-style program logic

▶ Monadic reification, making effectul computations pure
▶ A rich dependently typed logic, well-suited to reasoning by

computation about pure computations
▶ Semi-automated proofs, by encoding to SMT

8/26

Applying this approach to relational verification in F∗

A recipe with 5 main ingredients:

▶ Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

▶ A (unary) Hoare-style program logic
▶ Monadic reification, making effectul computations pure

▶ A rich dependently typed logic, well-suited to reasoning by
computation about pure computations

▶ Semi-automated proofs, by encoding to SMT

8/26

Applying this approach to relational verification in F∗

A recipe with 5 main ingredients:

▶ Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

▶ A (unary) Hoare-style program logic
▶ Monadic reification, making effectul computations pure
▶ A rich dependently typed logic, well-suited to reasoning by

computation about pure computations

▶ Semi-automated proofs, by encoding to SMT

8/26

Applying this approach to relational verification in F∗

A recipe with 5 main ingredients:

▶ Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

▶ A (unary) Hoare-style program logic
▶ Monadic reification, making effectul computations pure
▶ A rich dependently typed logic, well-suited to reasoning by

computation about pure computations
▶ Semi-automated proofs, by encoding to SMT

9/26

These ingredients are not unique to F∗

Dependent types Hoare logic, imperative programs
Monad-based effects SMT-based automation

Coq, Agda Dafny, Boogie, Vcc
Lean, Idris FramaC, Why3,

Isabelle (HOL) Verifast, ...

But their combination may be.

10/26

Back to our running example

let rec sum_up r lo hi =
if lo ̸= hi then (r := r + lo ; sum_up r (lo+1) hi)

let rec sum_down r lo hi =
if lo ̸= hi then (r := r + hi ; sum_down r lo (hi−1))

We want to show that on any initial memory, the programs
sum_up, and sum_dn results in related memories.

11/26

State as a monad

We start from a monadic presentation of state
type st (mem:Type) (a:Type) = mem →Tot (a ∗ mem)

let return (x:a) : st mem a = λh → (x, h)

let bind (c0 : st mem a) (f: a → st mem b) : st mem b =
λh0 → let x, h1 = c0 h0 in f x h1

let get () : st mem mem = λh → (h,h)

let put (h:mem) : st mem unit = λh0 → ((), h)

… and generate an abstract effect which can be implemented
primitively !
total new_effect { STATE : a:Type →Effect
with repr = st heap ; ... }

11/26

State as a monad

We start from a monadic presentation of state
type st (mem:Type) (a:Type) = mem →Tot (a ∗ mem)

let return (x:a) : st mem a = λh → (x, h)

let bind (c0 : st mem a) (f: a → st mem b) : st mem b =
λh0 → let x, h1 = c0 h0 in f x h1

let get () : st mem mem = λh → (h,h)

let put (h:mem) : st mem unit = λh0 → ((), h)

… and generate an abstract effect which can be implemented
primitively !
total new_effect { STATE : a:Type →Effect
with repr = st heap ; ... }

12/26

Unary Hoare Logic

Γ ⊢ {pre} code {post}

Γ ⊢ code : ST a (requires pre) (ensures post)

For stateful code :
▶ pre : h0:heap → prop
▶ post : h0:heap → result:a → h1:heap → prop

We can intrisically specify our programs :
val sum_up : r:ref int → lo:int → hi:int →ST unit

(requires λh0 → lo ≤ hi ∧ h0 ̀contains’ r)
(ensures λh0 () h1 → h1 ̀contains’ r)

let rec sum_up r lo hi =
if lo ̸= hi then (r := r + lo ; sum_up r (lo+1) hi)

12/26

Unary Hoare Logic

Γ ⊢ {pre} code {post}

Γ ⊢ code : ST a (requires pre) (ensures post)

For stateful code :
▶ pre : h0:heap → prop
▶ post : h0:heap → result:a → h1:heap → prop

We can intrisically specify our programs :
val sum_up : r:ref int → lo:int → hi:int →ST unit

(requires λh0 → lo ≤ hi ∧ h0 ̀contains’ r)
(ensures λh0 () h1 → h1 ̀contains’ r)

let rec sum_up r lo hi =
if lo ̸= hi then (r := r + lo ; sum_up r (lo+1) hi)

13/26

Reifying effectful computations, for logical reasoning only
(the main idea)

Monadic reification, an idea from Filinski, but here only for logical
reasoning

Γ ⊢ e : ST a (requires pre) (ensures post)
=⇒
Γ ⊢ reify e :

h0 : heap{pre h0}→ r:(a ∗ heap){post h0 (fst r) (snd r)}

Reification expose the monadic model of an effect in specification

14/26

Reifying effectful computations, for logical reasoning only
(the main idea)

Monadic reification, an idea from Filinski, but here only for logical
reasoning

Γ ⊢ e : STATE a (requires pre) (ensures post)
=⇒
Γ ⊢ reify e : GHOST

h0 : heap{pre h0}→ r:(a ∗ heap){post h0 (fst r) (snd r)}

Reification expose the monadic model of an effect in specification
And only in specification

15/26

Relating Reified Stateful Computations

We can now relate our 2 programs with the following lemma :
val eq_sum_up_dn (r:ref int) (lo hi:int) (h0:heap) : Lemma
(requires lo ≤ hi ∧ h0 ̀contains’ r)
(ensures let _, hup = reify (sum_up r lo hi) h0 in

let _, hdn = reify (sum_dn r lo hi) h0 in
hup.[r] == hdn.[r])

16/26

How the proof goes...

We need an auxilliary lemma relating the two functions :
val sum_up_dn_aux (r:ref int) (lo mid hi:int) (h0:heap) : Lemma
(requires lo ≤ mid ∧ mid ≤ hi ∧ h0 ̀contains’ r)
(ensures let (_, hup) = reify (sum_up r lo hi) h0 in

let (_, hmid) = reify (sum_up r lo mid) h0 in
let (_, hdn) = reify (sum_dn r mid hi) h0 in
hup.[r] == hmid.[r] + hdn.[r] − h0.[r])

The proof goes by induction on mid :
let rec sum_up_dn_aux r hi mid lo h0 =
if lo ̸= mid then (sum_up_dn_aux r lo (mid−1) hi ; ...)

With 2 lemmas not shown here, the SMT fills the rest of the gap

16/26

How the proof goes...

We need an auxilliary lemma relating the two functions :
val sum_up_dn_aux (r:ref int) (lo mid hi:int) (h0:heap) : Lemma
(requires lo ≤ mid ∧ mid ≤ hi ∧ h0 ̀contains’ r)
(ensures let (_, hup) = reify (sum_up r lo hi) h0 in

let (_, hmid) = reify (sum_up r lo mid) h0 in
let (_, hdn) = reify (sum_dn r mid hi) h0 in
hup.[r] == hmid.[r] + hdn.[r] − h0.[r])

The proof goes by induction on mid :
let rec sum_up_dn_aux r hi mid lo h0 =
if lo ̸= mid then (sum_up_dn_aux r lo (mid−1) hi ; ...)

With 2 lemmas not shown here, the SMT fills the rest of the gap

17/26

What happens under the hood

Reification is reduced away using the monadic operations

reify (return e) ⇝ λh0 → (e, h0)
reify (let x = e1 in e2) ⇝ λh0 → let x,h1 = e1 h0 in

e2 x h1
reify (get e) ⇝ λh0 → (e, h0)
reify (put e) ⇝ λh0 → ((), e)

leaving the SMT to reason only on pure code.

18/26

Deriving a program logic for program equivalence

Encoding Nick Benton’s (2004) RHL: c0 ∼ c1
type command = unit →ST unit

let (∼) (c0 c1:command) =
∀h. let h0, h1 = snd (reify (c0()) h), snd (reify (c1()) h) in

dom h0 == dom h1 ∧
∀(r:ref a{r ∈ h0}). h0.[r] == h1.[r])

19/26

Deriving a program logic for program equivalence

Encoding Nick Benton’s (2004) RHL: c0 ∼ c1 : Φ ⇒ Ψ

type command = unit →ST unit

let related (c0 c1:command) (pre post: heap → heap → prop) =
∀h0 h1. pre h0 h1 =⇒

let h0’, h1’ = snd (reify (c0()) h0), snd (reify (c1()) h1) in
post h0’ h1’

Sweeping many details handled in our paper under the rug
(notably, termination and equi-termination)

20/26

Deriving a program logic for program equivalence

Encoding Nick Benton’s (2004) RHL: c0 ∼ c1 : Φ ⇒ Ψ
Prove each of his syntax-directed proof rules as lemmas in F*:
▶ Relational assignment:

val rel_assign post x y e0 e1
: Lemma (let pre h0 h1 = post (h0.[x] <− e0)

(h1.[y] <− e1) in
related (x := e0) (y := e1) pre post)

▶ Relational sequencing:
val rel_seq p q r c0 c0’ c1 c1’

: Lemma (related c0 c1 p q ∧ related c0’ c1’ q r =⇒
related (c0 ; c0’) (c1 ; c1’) p r)

20/26

Deriving a program logic for program equivalence

Encoding Nick Benton’s (2004) RHL: c0 ∼ c1 : Φ ⇒ Ψ
Prove each of his syntax-directed proof rules as lemmas in F*:
▶ Relational assignment:

val rel_assign post x y e0 e1
: Lemma (let pre h0 h1 = post (h0.[x] <− e0)

(h1.[y] <− e1) in
related (x := e0) (y := e1) pre post)

▶ Relational sequencing:
val rel_seq p q r c0 c0’ c1 c1’

: Lemma (related c0 c1 p q ∧ related c0’ c1’ q r =⇒
related (c0 ; c0’) (c1 ; c1’) p r)

21/26

Mixing Syntax-directed and Semantic Reasoning

▶ Syntax-directed proof rules for c0 ∼ c1 : Φ ⇒ Ψ are
convenient

▶ But inherently incomplete, e.g., not possible to prove
sum_up ∼ sum_dn,

▶ Where syntax-directed rules don’t suffice, fall back on
reasoning directly on the reified semantics.

22/26

Mixing Syntax-directed and Semantic Reasoning
A Recurring Theme

Hybrid proofs of information-flow security
▶ Derive a Smith&Volpano-style IFC type system for a

embedded imperative language.
▶ Proving each rule as a relational lemma on the underlying

semantics
▶ Where the type system is too imprecise, or where programs

intentionally declassify information, prove a program-specific
non-interference theorem directly.

23/26

Several other case studies

▶ Program equivalence and RHL
▶ Static information-flow control

▶ Security of a dynamic information-flow control monitor
▶ Relational characterization of write and read effects (Benton)
▶ Simple game steps of code-based cryptographic proofs

(PRHL, FCF, ...)
▶ Algorithmic optimizations

▶ McBride’s memoization of recursive functions
▶ Classic optimizations of imperative Union/Find, via stepwise

refinement

23/26

Several other case studies

▶ Program equivalence and RHL
▶ Static information-flow control
▶ Security of a dynamic information-flow control monitor

▶ Relational characterization of write and read effects (Benton)
▶ Simple game steps of code-based cryptographic proofs

(PRHL, FCF, ...)
▶ Algorithmic optimizations

▶ McBride’s memoization of recursive functions
▶ Classic optimizations of imperative Union/Find, via stepwise

refinement

23/26

Several other case studies

▶ Program equivalence and RHL
▶ Static information-flow control
▶ Security of a dynamic information-flow control monitor
▶ Relational characterization of write and read effects (Benton)

▶ Simple game steps of code-based cryptographic proofs
(PRHL, FCF, ...)

▶ Algorithmic optimizations
▶ McBride’s memoization of recursive functions
▶ Classic optimizations of imperative Union/Find, via stepwise

refinement

23/26

Several other case studies

▶ Program equivalence and RHL
▶ Static information-flow control
▶ Security of a dynamic information-flow control monitor
▶ Relational characterization of write and read effects (Benton)
▶ Simple game steps of code-based cryptographic proofs

(PRHL, FCF, ...)

▶ Algorithmic optimizations
▶ McBride’s memoization of recursive functions
▶ Classic optimizations of imperative Union/Find, via stepwise

refinement

23/26

Several other case studies

▶ Program equivalence and RHL
▶ Static information-flow control
▶ Security of a dynamic information-flow control monitor
▶ Relational characterization of write and read effects (Benton)
▶ Simple game steps of code-based cryptographic proofs

(PRHL, FCF, ...)
▶ Algorithmic optimizations

▶ McBride’s memoization of recursive functions
▶ Classic optimizations of imperative Union/Find, via stepwise

refinement

24/26

Takeaways

▶ Main idea: Boil down relations on effectful computations to
relations on their pure, monadic representations
▶ Leverage existing proof assistants capability for reasoning

about pure functions
▶ The relational framework is at the library level, not in the tool

▶ Quickly prototype and validate new designs/logics/proof rules
▶ No arbitrary restriction on arity of relations
▶ Fallback on semantic reasoning when syntactic reasoning is

incomplete

25/26

Still lots to do ...

▶ Tactics: to scale and automate syntax directed relational
verification

▶ Non-termination: Only terminating terms can be reified
▶ But F* also supports partiality

▶ Observational purity : going down in the effect lattice

26/26

Still lots to do ...
Including applying it at scale for security verification

Project Everest: verify and deploy components in the HTTPS stack
▶ miTLS Verified reference implementation of TLS

• Cryptographic game based reduction to ...
• A classic information flow control argument

▶ HACL* High-Assurance Cryptographic Library
▶ Vale Verified Assembly Language for Everest

• Low-level crypto libraries, with proofs of security in the
presence of side channels, e.g., timing

26/26

Still lots to do ...
Including applying it at scale for security verification

Project Everest: verify and deploy components in the HTTPS stack
▶ miTLS Verified reference implementation of TLS

• Cryptographic game based reduction to ...
• A classic information flow control argument

▶ HACL* High-Assurance Cryptographic Library
▶ Vale Verified Assembly Language for Everest

• Low-level crypto libraries, with proofs of security in the
presence of side channels, e.g., timing

