Verifying Relations Between F* Programs

Nik Swamy

OPLSS 19

Relational Verification

Relating multiple programs,

Or multiple executions of a single program:
» Program equivalence, e.g., correctness of optimizations
> Program refinement

» Security properties, including hyper-properties like
non-interference

> ...

This talk based on A Monadic Framework for Relational
Verification, CPP 2018

Effects: A Central Difficulty in Relational Verification

P Relations between pure programs are ... relatively easy.

» But, how to even state relations between effectful programs?

Effects: A Central Difficulty in Relational Verification

P Relations between pure programs are ... relatively easy.
» But, how to even state relations between effectful programs?

» Many custom logics and tools to support stating and proving
relations between effectul programs.
» Benton (Relational Hoare Logic),
» Barthe at al (Probabilistic RHL, EasyCrypt),

» Type systems for information flow control (many)
> ...

Main ldea of this Work

(dead simple)

» Program effectful computations in an abstract, monadic style

e Abstraction enables effects to be compiled primitively, e.g.,
state with destructive updates

Main ldea of this Work

(dead simple)

» Program effectful computations in an abstract, monadic style
e Abstraction enables effects to be compiled primitively, e.g.,
state with destructive updates

» Reason about effectful computations by revealing their pure,
monadic representations
e Reduce relating effectful computations to relating pure
functions.

A basic example

Consider proving these two stateful, ML programs equivalent:
let rec sum_up r lo hi

if lo # hi then (r :=r + lo ; sum_up r (lo+1) hi)
let rec sum_down r lo hi =

if lo # hi then (r := r + hi ; sum_down r lo (hi—1))

» Both programs add the same value to the reference r
» But they compute it in a different order

A basic example: Attempt 1

Consider proving these two stateful, ML programs equivalent:
let rec sum_up r lo hi =
if lo = hi then (r :=r + lo ; sum_up r (lo+1) hi)
let rec sum_down r lo hi =
if lo # hi then (r := r + hi; sum_down r lo (hi—1))
Separate unary, functional correctness proofs

» Prove them functionally correct separately, e.g., using some
kind of Floyd-Hoare logic

» And prove that their pure functional specs are equivalent

A basic example: Attempt 1

Consider proving these two stateful, ML programs equivalent:
let rec sum_up r lo hi =
if lo = hi then (r :=r + lo ; sum_up r (lo+1) hi)
let rec sum_down r lo hi =
if lo # hi then (r := r + hi; sum_down r lo (hi—1))
Separate unary, functional correctness proofs

» Prove them functionally correct separately, e.g., using some
kind of Floyd-Hoare logic

» And prove that their pure functional specs are equivalent
» But, this is tedious: required writing separate functional specs

» And this style of proof may not always be possible

e Not every hyper-property can be expressed as a collection of
unary properties

A basic example: Attempt 2

Consider proving these two stateful, ML programs equivalent:
let rec sum_up r lo hi

if lo # hi then (r :=r + lo ; sum_up r (lo+1) hi)

let rec sum_down r lo hi

if lo = hi then (r := r + hi ; sum_down r lo (hi—1))

Relate the monadic representations of the stateful computations
> Prove sum_up r lo hi ~ sum_dn r lo hi
» Where ¢y ~ c; relates mem -> a * mem pure computations

e i.e., relating the monadic representations of ¢y, ¢;.

Applying this approach to relational verification in F*

A recipe with 5 main ingredients:

Applying this approach to relational verification in F*

A recipe with 5 main ingredients:

» Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

Applying this approach to relational verification in F*

A recipe with 5 main ingredients:

» Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

» A (unary) Hoare-style program logic

Applying this approach to relational verification in F*

A recipe with 5 main ingredients:

» Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

» A (unary) Hoare-style program logic
» Monadic reification, making effectul computations pure

Applying this approach to relational verification in F*

A recipe with 5 main ingredients:

» Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

» A (unary) Hoare-style program logic
» Monadic reification, making effectul computations pure

» A rich dependently typed logic, well-suited to reasoning by
computation about pure computations

Applying this approach to relational verification in F*

A recipe with 5 main ingredients:

» Effectful programming with abstract, monadic computations,
extracted to efficient imperative code in OCaml, F#, C

» A (unary) Hoare-style program logic
» Monadic reification, making effectul computations pure

» A rich dependently typed logic, well-suited to reasoning by
computation about pure computations

» Semi-automated proofs, by encoding to SMT

These ingredients are not unique to F*

Dependent types Hoare logic, imperative programs
Monad-based effects SMT-based automation
Coq, Agda Dafny, Boogie, Vcc
Lean, Idris FramaC, Why3,
Isabelle (HOL) Verifast, ...

But their combination may be.

Back to our running example

let rec sum_up r lo hi =

if lo # hi then (r :=r + lo ; sum_up r (lo+1) hi)

let rec sum_down r lo hi =
if lo # hi then (r := r + hi ; sum_down r lo (hi—1))

We want to show that on any initial memory, the programs
sum_up, and sum_dn results in related memories.

State as a monad
We start from a monadic presentation of state
type st (mem:Type) (a:Type) = mem — Tot (a * mem)
let return (x:a) : st mem a = Ah —(x, h)

let bind (cO : st mem a) (f: a — st mem b) : st mem b =
Ah0 —let x, h1 = c0 hO in f x hl

let get () : st mem mem = Ah — (h,h)

let put (h:mem) : st mem unit = AhO — ((), h)

State as a monad

We start from a monadic presentation of state

type st (mem:Type) (a:Type) = mem — Tot (a * mem)
let return (x:a) : st mem a = Ah —(x, h)

let bind (cO : st mem a) (f: a — st mem b) : st mem b =
Ah0 —let x, h1 = c0 hO in f x hl

let get () : st mem mem = Ah — (h,h)

let put (h:mem) : st mem unit = AhO — ((), h)

.. and generate an abstract effect which can be implemented
primitively !

total new_effect { STATE : a:Type — Effect
with repr = st heap ; ... }

Unary Hoare Logic

I' - {pre} code {post}
I'F code : ST a (requires pre) (ensures post)
For stateful code :

» pre : hO:heap — prop
» post : h0:heap — result:a — h1l:heap — prop

Unary Hoare Logic

I' - {pre} code {post}

I'F code : ST a (requires pre) (ensures post)

For stateful code :

» pre : hO:heap — prop

P post : hO:heap — result:a — h1:heap — prop
We can intrisically specify our programs :

val sum_up : r:ref int — lo:int — hiint — ST unit
(requires AhO — lo < hi A hO “contains’ r)
(ensures AhO () h1 — h1 “contains’ r)

let rec sum_up r lo hi =
if lo # hi then (r :=r + lo ; sum_up r (lo+1) hi)

Reifying effectful computations, for logical reasoning only

(the main idea)

Monadic reification, an idea from Filinski, but here only for logical
reasoning

'k e: ST a (requires pre) (ensures post)
.
I'F reify e:
hO : heap{pre h0}— r:(a x heap){post hO (fst r) (snd r)}

Reification expose the monadic model of an effect in specification

Reifying effectful computations, for logical reasoning only

(the main idea)

Monadic reification, an idea from Filinski, but here only for logical
reasoning

'+ e: STATE a (requires pre) (ensures post)
_—
I' F reify e: GHOST
hO : heap{pre h0}— r:(a x heap){post hO (fst r) (snd r)}

Reification expose the monadic model of an effect in specification
And only in specification

Relating Reified Stateful Computations

We can now relate our 2 programs with the following lemma :

val eq_sum_up_dn (r:ref int) (lo hi:int) (hO:heap) : Lemma
(requires lo < hi A h0 "contains’ r)
(ensures let _, hup = reify (sum_up r lo hi) hO in
let _, hdn = reify (sum_dn r lo hi) hO in
hup.[r] == hdn.[r])

How the proof goes...

We need an auxilliary lemma relating the two functions :

val sum_up_dn_aux (r:ref int) (lo mid hi:int) (hO:heap) : Lemma
(requires lo < mid A mid < hi A hO contains' r)
(ensures let (_, hup) = reify (sum_up r lo hi) hO in
let (_, hmid) = reify (sum_up r lo mid) hO in
let (_, hdn) = reify (sum_dn r mid hi) hO in
hup.[r] == hmid.[r] + hdn.[r] — hO.[r])

How the proof goes...

We need an auxilliary lemma relating the two functions :

val sum_up_dn_aux (r:ref int) (lo mid hi:int) (hO:heap) : Lemma
(requires lo < mid A mid < hi A hO *contains’ r)
(ensures let (_, hup) = reify (sum_up r lo hi) hO in
let (_, hmid) = reify (sum_up r lo mid) hO in
let (_, hdn) = reify (sum_dn r mid hi) hO in
hup.[r] == hmid.[r] + hdn.[r] — hO.[r])

The proof goes by induction on mid :

let rec sum_up_dn_aux r hi mid lo h0 =
if lo # mid then (sum_up_dn_aux r lo (mid—1) hi ; ...)

With 2 lemmas not shown here, the SMT fills the rest of the gap

What happens under the hood

Reification is reduced away using the monadic operations

reify (return e) ~» Ah0 — (e, h0)
reify (let x = el ine2) ~» AhO —let x,h1 =€l hO in
e2 x hl
reify (get e) ~» AhO — (e, h0)
reify (pute) ~» Ah0 —((), e)

leaving the SMT to reason only on pure code.

Deriving a program logic for program equivalence

Encoding Nick Benton's (2004) RHL: ¢y ~ ¢;

type command = unit — ST unit

let (~) (cO cl:command) =
Vh. let hO, h1 = snd (reify (c0()) h), snd (reify (c1()) h) in
dom h0 == dom h1l A
V(r:ref a{r € h0}). h0.[r] == h1.[r])

Deriving a program logic for program equivalence

Encoding Nick Benton's (2004) RHL: ¢p ~¢;: & = ¥

type command = unit — ST unit

let related (cO cl:command) (pre post: heap — heap — prop) =
VvhO hl. pre hO hl =
let h0', h1" = snd (reify (c0()) h0), snd (reify (c1()) h1) in
post hQ' hl’

Sweeping many details handled in our paper under the rug
(notably, termination and equi-termination)

Deriving a program logic for program equivalence

Encoding Nick Benton's (2004) RHL: ¢cp ~ ¢ : & = ¥
Prove each of his syntax-directed proof rules as lemmas in F*:

P> Relational assignment:

val rel_assign post x y e0 el
: Lemma (let pre h0 h1l = post (h0.[x] <— €0)
(h1l.[y] <—el)in
related (x := e0) (y := el) pre post)

Deriving a program logic for program equivalence

Encoding Nick Benton's (2004) RHL: ¢cp ~ ¢ : & = ¥
Prove each of his syntax-directed proof rules as lemmas in F*:

P> Relational assignment:

val rel_assign post x y e0 el
: Lemma (let pre h0 h1l = post (h0.[x] <— €0)
(h1l.[y] <—el)in
related (x := e0) (y := el) pre post)

» Relational sequencing:

val rel_seqpqrcOcO clcl
: Lemma (related c0 cl1 p q A related c0' cl' q r =
related (c0 ; c0') (c1;cl’) pr)

Mixing Syntax-directed and Semantic Reasoning

» Syntax-directed proof rules for g ~ ¢ : & = WV are
convenient

» But inherently incomplete, e.g., not possible to prove
sum_up ~ sum_dn,

> Where syntax-directed rules don't suffice, fall back on
reasoning directly on the reified semantics.

Mixing Syntax-directed and Semantic Reasoning
A Recurring Theme

Hybrid proofs of information-flow security

» Derive a Smith&Volpano-style IFC type system for a
embedded imperative language.

» Proving each rule as a relational lemma on the underlying
semantics
» Where the type system is too imprecise, or where programs
intentionally declassify information, prove a program-specific
non-interference theorem directly.

Several other case studies

> Program equivalence and RHL

» Static information-flow control

Several other case studies

> Program equivalence and RHL
» Static information-flow control

» Security of a dynamic information-flow control monitor

Several other case studies

> Program equivalence and RHL
» Static information-flow control
» Security of a dynamic information-flow control monitor

» Relational characterization of write and read effects (Benton)

Several other case studies

Program equivalence and RHL
Static information-flow control
Security of a dynamic information-flow control monitor

Relational characterization of write and read effects (Benton)

vVvYyyvyy

Simple game steps of code-based cryptographic proofs
(PRHL, FCF, ...)

Several other case studies

Program equivalence and RHL
Static information-flow control
Security of a dynamic information-flow control monitor

Relational characterization of write and read effects (Benton)

vVvYyyvyy

Simple game steps of code-based cryptographic proofs
(PRHL, FCF, ...)

» Algorithmic optimizations

» McBride's memoization of recursive functions

» Classic optimizations of imperative Union/Find, via stepwise
refinement

Takeaways

» Main idea: Boil down relations on effectful computations to
relations on their pure, monadic representations
P |everage existing proof assistants capability for reasoning
about pure functions
» The relational framework is at the library level, not in the tool
> Quickly prototype and validate new designs/logics/proof rules
» No arbitrary restriction on arity of relations
> Fallback on semantic reasoning when syntactic reasoning is
incomplete

Still lots to do ...

P> Tactics: to scale and automate syntax directed relational
verification
» Non-termination: Only terminating terms can be reified
» But F* also supports partiality

» Observational purity : going down in the effect lattice

Still lots to do ...
Including applying it at scale for security verification

Project Everest: verify and deploy components in the HTTPS stack

» miTLS Verified reference implementation of TLS

e Cryptographic game based reduction to ...
e A classic information flow control argument

Still lots to do ...
Including applying it at scale for security verification

Project Everest: verify and deploy components in the HTTPS stack

» miTLS Verified reference implementation of TLS

e Cryptographic game based reduction to ...
e A classic information flow control argument

» HACL* High-Assurance Cryptographic Library
» Vale Verified Assembly Language for Everest

e Low-level crypto libraries, with proofs of security in the
presence of side channels, e.g., timing

