Thanks to Jonathan Protzenko and Chris Hawblitzel for these slides. Errors are mine

Nik Swamy, OPLSS 2019

What is a cryptographic provider?

APIS GROUPED BY *FAMILY* (AGILITY) EASY-TO-USE API (CPU AUTO-DETECTION)

A *COLLECTION* OF ALGORITHMS **(EXHAUSTIVE)**

SEVERAL IMPLEMENTATIONS (MULTIPLEXING)

An essential piece of software

A cryptographic provider is useful **beyond secure communications**, e.g.

- file encryption
- secure enclaves
- document signatures
- cryptocurrencies
- any modern piece of software

What is a cryptographic *provider?*

A brief reminder: why verify cryptographic algorithms?

AES-GCM

Evaluate polynomials in this field to get an **authentication code!** (see also: Poly1305)

GHASH (AES-GCM):

- $p = 2^{128} (q = 2, n = 128)$
- $P = x^{128} + x^7 + x^2 + x + 1$

"the math"

Distilling the math for implementors

GCM		2.4 Decryp	tion GCM						
2.4 Decryption									
2.4 Deciyption									
The authenticated dec									
the hash step and end									
	GCM		GCM		4.1 Software				
	The highest term of f to add the lowest term	1 1 7 1 1 1 1	The area of the second se		F familie fait for an				
	coefficients and addin								
	operations, this can be if $X_{127} = 0$ then								
The tag T' that is com	$Y \leftarrow \operatorname{rightshift}(X$								
the ciphertext C. If the Otherwise, the special	else $Y \leftarrow rightshift(X)$	GCM	4.1 Software GCM	N		4.1 Software			
Otherwise, the special	end if								
2.5 Multiplication	where R is the elemen	dependent and							
2.5 Wullpheation	all zeros.	conserve mem total of 8 192 h							
The multiplication op	In order to multiply tv	10411010,1320							
specification. This def in GCM. Section 3 pro	use the method descril and Y as inputs and re	With a small i considerably, a							
tion 4 describes some	$Z \leftarrow 0, V \leftarrow X$	an arbitrary el	GCM 4.2 Hardware	GC	M		4.2 Hardware		
Each element is a vec	for $i = 0$ to 127 do if $Y_i = 1$ then		Algorithm 3 Computes the table M_0 given an element $H \in GF(2^{128})$.						
bit is X_0 , and the rig $B = 11100001 0^{120}$ a	$Z \leftarrow Z \oplus V$		$M[128] \leftarrow H, i \leftarrow 64$						
argument one bit to th	$V \leftarrow V \cdot P$	This equation $Z \leftarrow 0$	while $i > 0$ do $M[i] \leftarrow M[2i] \cdot P$						
$1 \le i \le 127 \text{ and } W_0 =$	end for return Z	for $i = 15$ to	$i \leftarrow \lfloor i/2 \rfloor$						
		$Z \leftarrow Z \oplus ($ $Z \leftarrow Z \cdot F$	$i \leftarrow 2$						
3 The Field GF	In this algorithm, V ru to the powers of α , mo	end for	while $i < 128$ do for $i = 1$ to $i = 1$ do		AAD	IV plaintext			
	defined in terms of fiel	$z \leftarrow z \oplus (x)$ return Z	$M[i+j] = M[i] \oplus M[j]$			\mp \mp			
A finite field is defin the basic algebraic pro		Note that i los	end for $i \leftarrow 2i$						
associativity, and dist	4 Implementat	power of P ⁸ .	end while $M[0] \leftarrow 0^{128}$		× +	incr			
element. In a polynorr	200 - 200 • 0 200 200 200	arbitrary elem product as	retum M		\searrow				
	Implementing GCM is				mult	F			
	of the underlying bloc provide an overview o		4.2 Hardware		International Action of the second se	² K			
	tion of the multiplicati	The expression	In this section, we outline a pipelined hardware design, which is illustrated in Figure 3. The trape-						
	The number of block	element x to th be computed y	zoids at the top and bottom denote inputs and outputs, respectively. The rhomboids denote the						
	equal to $\lceil p/128 \rceil + 1$. tional block cipher in	using a table, a	(AAD), the IV, and the plaintext. The IV is fed into the increment function, which then outputs		Å				
	tional block cipiter init	products, so th be combined.	successive counter values that are fed into the block cipher pipeline, shown as E_K in the fig- ure. The first encrypted counter is sent to encrypt the GHASH output (path 3), then the output		Ψ				
		The table 1/ .	of that function is switched so that the other encrypted counters are exored with the plaintext			+			
		112 bits equal	to form the ciphertext (path 2). The authenticated-only data is ted into the GHASH function (path 1), then the input of that function is switched to the ciphertext (path 2). After all of the		tag	ciphertext			
		It is not key-de into four-bit el	data input to GHASH has been processed, the output of that function is exored with the fist en-						
			ciphertext-generating pipelines are independent, except for the tag-encryption step. These two		ay 1	only nath		•	
		The performat implementatio	pipelines can be made completely independent by adding another AES engine dedicated to the encryption of the GHASH output.		3. hash e	ent. ag pat			
		5	Binaru Calais field multiplication is sensed. Its witchle for hardware inclusion interview. More the					/()[]]	
			plementation strategies are discussed in the literature. Parr [11] summarizes the efficiency of var-	Figu	ure 3: A hardware implementation o uit.	or Gene, showing the life of data p	baths through the		
			ious finite field multiplication methods for $GF(2^q)$ as follows:						
							1		

15

14

Writing the actual code

A long way from quotienting a ring by an ideal

"the reality"

	. Lgem_dee_body.		
445			
446	\$code.=<<;		
447	vzeroupper		
448			
449	vmovaqu	(\$1VP),\$11	# input counter value
450	add	\\$-128,%rsp	
451		12(\$1vp),\$counter	
452	lea	.LDSwap_mask(%rip),\$cons	
400	lea	-0X80(\$KEY),\$100	# DDF fanda
454	lliuv	(\$0X100,\$elluo (\$Vin) \$Vi	# lood Vi
455	and	$(3 \land 1 p), 3 \land 1$	# codu AI
450	anu vmovdau	(\$-120, \$15p)	# borrow \$Ti for Ibsyan mark
457	lea	(3COUSC), 311 0x80(\$key) \$key	# size ontimization
450	162	$0 \times 20 + 0 \times 20$ (\$Xin) \$Xin	# size optimization
460	mov	$0xf0_0x80($key)$ rounds	
461	vnshufh	sTi sXi sXi	
462	vpsharb	ψ···, ψ/··	
463	and	\$end0.\$in0	
464	and	%rsp.\$end0	
465	sub	\$in0.\$end0	
466	ic	.Ldec no kev aliasing	
467	qmo	\\$768.\$end0	
468	inc	.Ldec no key aliasing	
469	sub	\$end0,%rsp	<pre># avoid aliasing with key</pre>
470	.Ldec no key aliasing:		
471			
472	vmovdqu	0x50(\$inp),\$Z3	# I[5]
473	lea	(\$inp),\$in0	
474	vmovdqu	0x40(\$inp),\$Z0	
475	lea	-0xc0(\$inp,\$len),\$end0	
476	vmovdqu	0x30(\$inp),\$Z1	
477	shr	\\$4,\$len	
478	xor	\$ret,\$ret	
479	vmovdqu	0x20(\$inp),\$Z2	
480	vpshufb	\$11,\$Z3,\$Z3	<pre># passed to _aesn1_ctr32_ghash_6x</pre>
481	vmovaqu	0X10(\$1np),\$12	
482	Vpsnutb	11,520,520	
403	villovaqu	(\$10),\$0Key	
404	vpshurb	p_{11}, p_{21}, p_{21}	
400	viiiovaqu	azu, uzou (arsp)	
400	vpsharb	p_{11}, p_{22}, p_{22} (71, 0) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	
188	viiovaqu	¢Ti ¢T2 ¢T2	
480	vmovdau	$\frac{311}{312}, \frac{312}{812}$ \$72 Av5A(%rcn)	
490	vnshufb	STi SHkey SHkey	
491	vmovdqu	T2 0x60(%rsn)	
492	vmovdqu	$\frac{1}{2}$	
493	ville v dqu	enney; ex; e (er 3p)	
494	call	aesni ctr32 ghash 6x	
495			
100			
496	vmovups	<pre>\$inout00x60(\$out)</pre>	# save output

What could possibly go wrong?

Many bugs in Curve25519 implementations

(C and assembly)

📮 agl

Ed25519 amd64 bug

Raw

🖸 gistfile1.md

agl / curve25519-donna	• Watch While visiting 30c3, I attended the You-b	proke-the-Internet workshop on NaCl. NaCl (asm)			
Code Issues 2 In Pull requests 7 Projects 0 E Wiki In Corroct bounds in 22 bit code	<pre>One thing mentioned in the talk was that Ed25519 isn't included in NaCl yet (they amd64 assembly implementation of Ed2 randomized tests. This bug is caused by bug is hard to fint (occurs with probabilit af m.t:</pre>	auditing crypto code is a lot of work, and that this is one of the reasons why promised a version including it for 2014). The speakers mentioned a bug in the 5519 as an example of a bug that can only be found by auditing, not by a carry being added in the wrong place, but since that carry is usually zero, the y 2^{-60} or so).			
The 32-bit code was illustrative of the tricks used in the original curve25519 paper rather than rigorous. However, it has proven quite popular.	FOR(i,16) t[i]=ncar25519(t);car25519(t);car25519(t);car25519(t);FOR(j,2) {	Partial audits have revealed a bug in this software (r1 += 0 + carry should be r2 += 0 + carry in amd64-64-24k) that would not be caught by random tests; this illustrates the importance of audits. Searching for this string in the SUPERCOP source code turns up four matches: crypto_scalarmult\curve25519\amd64-64\fe25519_mul.s crypto_scalarmult\curve25519\amd64-64\fe25519_square.s crypto_sign\ed25519\amd64-64-24k\fe25519_mul.s crypto_sign\ed25519\amd64-64-24k\fe25519_square.s			
This change fixes an issue that Robert Ransom found where outputs between 2^255–19 and 2^255–1 weren't correctly reduced in fcontract. This appears to leak a small fraction of a bit of security of private keys.	<pre>m[0]=t[0]-0xff for(i=1;i<15;i m[i]=t[i]-0x m[i-1]&=0xff } crypto_scalarmult\curve25519\amd64 crypto_sign\ed25519\amd64-64-24k\f crypto_sign\ed2</pre>				
Additionally, the code has been cleaned up to reflect the real-world needs. The ref10 code also exists for 32-bit, generic C but is somewhat slower and objections around the lack of qhasm availibility have been raised.	<pre>So it apprears like the amd64-64 implem m[15]=t[15]-0x b=(m[15]>>16)& It seems difficult to exploit this when use m[15]&=0xffff; sel25519(t,m,1-b); }</pre>	entation of both Curve25519 and Ed25519 is affected. d for key generation or signing since the attacker cannot influence the data. Key- it be a problem.			
[№] master © 1.3 Curve25519-donna	<pre>FOR(i,16) { o[2*i]=t[i]&0xff; TweetNaC</pre>				
agl committed on Jun 9, 2014 1 parent	0[2*1+1]=t[1]>>8; 100 C C C C C C C				

This bug is triggered when the last limb n[15] of the input argument n of this function is greater or equal than 0xffff. In these cases the result of the scalar multiplication is not reduced as expected resulting in a wrong packed value. This code can be fixed simply by replacing m[15]&=0xffff; by m[14]&=0xffff;

3 Bugs in OpenSSL <u>implementation</u> of Poly1305 last year

OpenSSL Security Advisory [10 Nov 2016]

[openssl-dev] [openssl.org #4439] poly1305-x86.pl produces incorrect output

"These produce wrong results. The first example does so only on 32 bit, the other three also on 64 bit."

"I believe this affects both the SSE2 and AVX2 code. It does seem to be dependent on this input pattern."

"I'm probably going to write something to generate random inputs and stress all your other poly1305 code paths against a reference implementation."

 $\frac{1}{100} = \frac{1}{100} = \frac{1}$

recommend doing the same in your own test harness, to make sure there aren't others of these bugs lurking around.

Implementation bug in AES-GCM

The fragility of AES-GCM authentication algorithm

Shay Gueron^{1,2}, Vlad Krasnov²

¹ Department of Mathematics, University of Haifa, Israel ² Intel Corporation, Israel Development Center, Haifa, Israel

March 15, 2013

Abstract. A new implementation of the GHASH function has been recently committed to a Git version of OpenSSL, to speed up AES-GCM. We identified a bug in that implementation, and made sure it was quickly fixed before trickling into an official OpenSSL trunk. Here, we use this (already fixed) bug

Implementation bug in Windows SymCrypt

Potential DDOS.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1804

Issue 1804: cryptoapi: SymCrypt modular inverse algorithm Reported by taviso@google.com on Tue, Mar 12, 2019, 9:15 PM PDT Project Member

There's a bug in the SymCrypt multi-precision arithmetic routines that can cause an infinite loop when calculating the modular inverse on specific bit patterns with bcryptprimitives!SymCryptFdefModInvGeneric.

I've been able to construct an X.509 certificate that triggers the bug. I've found that embedding the certificate in an S/MIME message, authenticode signature, schannel connection, and so on will effectively DoS any windows server (e.g. ipsec, iis, exchange, etc) and (depending on the context) may require the machine to be rebooted. Obviously, lots of software that processes untrusted content (like antivirus) call these routines on untrusted data, and this will cause them to deadlock.

Program verification!

What is verified?

What do we verify?

Safety

Memory- and type-safety. Mitigates buffer overruns, dangling pointers, code injections. No undefined behavior.

Functional correctness

Our fast implementations behave precisely as our simpler specifications.

Secrecy

Access to secrets, including crypto keys and private app data is restricted according to design.

Our specifications and implementations are written together, in one language (F*) Drift between spec and implementation cannot happen.

Each application can do custom proofs beyond functional correctness and safety:

- non malleability (parsers)
- crypto games (TLS)
- security reduction (Merkle Trees)
- etc. etc.

COMPUTER SECURITY

Cryptography That Can't Be Hacked

Researchers have just released hacker-proof cryptographic code —
 programs with the same level of invincibility as a mathematical proof.

Schneier on Security

Blog >

Unhackable Cryptography?

A <u>recent article</u> overhyped the release of <u>EverCrypt</u>, a cryptography library created using formal methods to prove security against specific attacks.

The *Quanta* magazine article sets off a series of "snake-oil" alarm bells. The author's Github README is more measured and accurate, and illustrates what a cool project this really is. But it's not "hacker-proof cryptographic code."

Tags: cryptography, encryption, hacking, snake oil

same sentiment on: Hacker News, Reddit, Slashdot, twitter, etc.

Will Everest be perfectly secure? No.

Our models make assumptions, e.g.

- The private signing key must remain private and not used in other protocols
- We assume security for core crypto algorithms, based on hard problems.

Our models may not be complete

• Our detailed models are designed to exclude all known attacks, but may be blind to new classes of attack (hardware faults,...)

Our verification toolchain may be buggy

• Our TCB includes Z3, Kremlin, C compilers... Efforts to reduce it are under way.

Computer-aided verification also has advantages: once in place, proof verification is

- automated (but takes hours)
- compositional (we can re-use verified component as building blocks for others)
- maintainable (we can extend or modify our code, and re-check everything as part of CI).

The Essence of EverCrypt

EverCrypt: no excuses industrial-grade crypto library, with full verification

- A **single artifact** for clients to use
- **State-of-the-art** performance
- A single verification result (Vale or Low*)
- **Deep integration** for seamless interop
- Total abstraction for clients

Algorithm	C version	ASM version	Agile API
AES-GCM		✓ (AESNI)	\checkmark
ChachaPoly	\checkmark		\checkmark
MD5, SHA1	\checkmark		√
SHA2	\checkmark	✓ (SHAEXT)	\checkmark
SHA3	\checkmark		
Blake2	\checkmark		
HMAC	\checkmark		✓
HKDF	\checkmark		\checkmark
Curve25519	√	✓ (BMI2 + ADX)	
Ed25519	\checkmark		
Chacha20	✓		
AES 128, 256		\checkmark	
AES-CTR		\checkmark	
Poly1305	✓ (+ AVX + AVX2)	✓ (X64)	

One algorithm, several implementations *(multiplexing)*

- Verifies multiple implementations (Vale & Low*) against one specification
- Isolates clients from processor and target details
- Auto-detects static & dynamic features
- Eliminates illegal instruction errors
- Expected by an industrial-grade library

```
c EverCrypt_Poly1305.c
 void EverCrypt_Poly1305_poly1305(uint8 t *dst, uint8 t *src, u
Gint32 t len1, uint8 t *key)
   bool avx2 = EverCrypt AutoConfig2 has avx2();
   bool avx = EverCrypt AutoConfig2 has avx();
   bool vale1 = EverCrypt AutoConfig2 wants vale();
   #if EVERCRYPT TARGETCONFIG X64
   if (avx2)
     Hacl Poly1305 256 poly1305 mac(dst, len1, src, key);
     return;
   #endif
   #if EVERCRYPT TARGETCONFIG X64
   if (avx)
     Hacl Poly1305 128 poly1305 mac(dst, len1, src, key);
     return;
   #endif
   #if EVERCRYPT TARGETCONFIG X64
   if (vale1)
     EverCrypt Poly1305 poly1305 vale(dst, src, len1, key);
     return;
   #endif
   Hacl_Poly1305_32_poly1305_mac(dst, len1, src, key);
      - 19k EverCrypt_Poly1305.c
                                                 ??: 0
                                          unix |
                                                          Bottom
```

Several algorithms, one API (agility)

- Verifies that multiple algorithms fit the same **family of specifications**
- Allows clients to switch between algorithms (crucial for TLS)
- Uses F* meta-programming to templatize the code
- Expected by an **industrial-grade library**

```
c EverCrypt Hash.c
void EverCrypt Hash init(EverCrypt Hash state s *s)
 EverCrypt Hash state s scrut = *s;
 if (scrut.tag == EverCrypt Hash MD5 s)
   uint32 t *p1 = scrut.case MD5 s;
   Hacl_Hash_Core_MD5_init(p1);
 else if (scrut.tag == EverCrypt Hash SHA1 s)
   uint32 t *p1 = scrut.case SHA1 s;
   Hacl Hash Core SHA1_init(p1);
 else if (scrut.tag == EverCrypt_Hash_SHA2_224_s)
   uint32 t *p1 = scrut.case SHA2 224 s;
   Hacl Hash Core SHA2 init 224(p1);
 else if (scrut.tag == EverCrypt Hash SHA2 256 s)
   uint32 t *p1 = scrut.case SHA2 256 s;
   Hacl Hash Core SHA2 init 256(p1);
 else if (scrut.tag == EverCrypt Hash SHA2 384 s)
   uint64 t *p1 = scrut.case SHA2 384 s;
   Hacl Hash Core SHA2 init 384(p1);
 else if (scrut.tag == EverCrypt Hash SHA2 512 s)
   uint64 t *p1 = scrut.case SHA2 512 s;
   Hacl Hash Core SHA2 init 512(p1);
 else
      62k EverCrypt_Hash.c 📝 C/*l 📝 unix | 359: 0 🔪 39%
```

Deep integration between C and ASM (speed)

Implementation	Radix	Language	CPU cy.
donna64 [2]	51	64-bit C	159634
fiat-crypto [31]	51	64-bit C	145248
amd64-64 [21]	51	Intel x86_64 asm	143302
sandy2x [22]	25.5	Intel AVX asm	135660
EverCrypt portable (<i>this paper</i>)	51	64-bit C	135636
openssl* [5]	64	Intel ADX asm	118604
Olivera et al. [52]	64	Intel ADX asm	115100
EverCrypt targeted (<i>this paper</i>)	64	64-bit C	113614
		+ Intel ADX asm	

Figure 10. Performance comparison between Curve25519 Implementations.

Verification allows more optimizations and does not compromise speed.

Mundane parts of the algorithms are written in Low* while critical bits are in Vale.

A new verified interop layer ensures **sound interoperation** between two languages.

EverCrypt **seals** the abstraction, meaning verified clients are **shielded from underlying verification details**.

A significant verification effort

Components	LOC
All specifications	8009
Low [*] support libraries	6066
Low [*] algorithms	17637
Vale libraries and interop (F^*)	37127
Vale algorithms (Vale)	25467
EverCrypt layer	4412
Merkle tree	6505
QUIC transport cryptography	2282
Total (hand-written F^* and Vale)	107505
Vale algorithms (F^* code generated from Vale files)	76685
Compiled code (.c files)	23400
Compiled code (.h files)	4236
Compiled code (ASM files)	18046

Figure 11. System Line Counts.

Verified Assembly Language in Vale / F*

We have a *fast* verified AES-GCM

Optimizing AES-GCM

Important optimizations:

- delay mod operations
- parallelize add/mul operations
- math+bitwise tricks for mod
- careful instruction scheduling
- $(((init + c_1) * s \% P + c_2) * s \% P + c_3) * s \% P$ $\rightarrow (((init + c_1) * s + c_2) * s + c_3) * s \% P$ $\rightarrow ((init + c_1) * s^3 + c_2 * s^2 + c_3 * s^1) \% P$ $\rightarrow ((init + c_1) * (s^3 \% P) + c_2 * (s^2 \% P) + c_3 * s^1) \% P$

Vale: extensible, automated assembly language verification

Vale: extensible, automated assembly language verification

Verification condition

Ugh! Default SMT query looks awful!

verification condition we want:

..... $(rax_2 == rax_0 + rbx_1 ==>$

 $rbx_1 + rax_2 < 2^{64}$

verification condition we get: (forall (ghost result 0:(state * fuel)). (let (s3, fc3) = ghost result 0 ineval code (Ins (Add64 (OReg (Rax)) (OReg (Rbx)))) fc3 s2 == Some s3 \wedge eval operand (OReg Rax) s3 == eval operand (OReg Rax) s2 + eval operand (OReg Rbx) s2 \wedge s3 == update state (OReg Rax).r s3 s2) ==> lemma_Add s2 (OReg Rax) (OReg Rbx) == ghost_result_0 ==> (forall (s3:state) (fc3:fuel). lemma Add s2 (OReg Rax) (OReg Rbx) == Mktuple2 s3 fc3 ==> Cons? codes Triple.tl /(forall (any result0:list code). codes Triple.tl == any result0 ==> (forall (any result1:list code). codes Triple.tl.tl == any result1 ==> OReg? (OReg Rbx) /\ eval_operand (OReg Rbx) s3 + eval_operand (OReg Rax) s3 < 2^{64}

- And how do we interact with F*?
- Can we reuse F* features and libraries?

• Reuse F* features and libraries? **Yes**

Demo

• Verification condition generation for Vale

Demo: Interop between Vale and Low*

Conclusions

- We've verified fast assembly language crypto implementations:
 - SHA
 - Poly1305
 - AES-GCM
 - Curve25519
- Expressive logics + SMT automation
 - We wrote our own domain-specific VC generator
 - We proved it sound
 - We run it from with F*'s type checker, and verification is fast
 - What other opportunities are there?

https://project-everest.github.io/

Deployments and applications

Level 1: cherry-pick approach

poly1305-simd is among the failing algorithms because it loses carry bits when handling long "all 0xff bytes" inputs. poly1305-avx2-x86_64.S is definitely broken, and poly1305-sse2-x86_64.S *might* be too. I am working on a patch...

Example: Linux Kernel (ZINC).

- Kernel already has multiplexing and CPU auto-detection facilities.

- Taking EverCrypt Curve25519 (C/ASM)
- Also took Fiat crypto
- They want algorithms we don't yet have

Also in that category: Firefox

The latter project takes the approach of modeling the algorithm in F^{*} and proving the model correct, which F^{*} is designed to optimize. **Then** — in a term of art which never fails to make me think of Arnold Schwarzenegger's Terminator descending into a bath of molten metal — the model is "lowered into" C (or in some cases, all the way into assembly language). According to Donenfeld, this produces C which, though slightly non-idiomatic, is surprisingly readable, and much more likely to be bug-free than human-written code. It also produces some of the fastest C implementations that exist, which he suspects is because the formal verification process removes certain things that are not obviously removable when you're working the mathematics out by hand.

Level 2: the whole library

- Easiest approach: just take the whole directory
- Expectations are higher for security-related applications
- Beneficial peer pressure

<u>Examples:</u> Concordium & Tezos blockchains, remote attestation (UC Irvine)

network-based attacks from compromising CIDER. We shield the remaining core CIDER code from the adversary through isolation in time and by checking the integrity of all inputs using the formally verified High-Assurance Cryptographic Library (HACL) [34].

Level 3: extend

- Formal verification an advantage for standards competitions (NIST)
- Post-quantum algorithms: qTESLA, Frodo

Lattice-based digital signature scheme: qTESLA

Sedat Aklevlek Erdem Alkim Paulo S. L. M. Barreto Nina Bindel Johannes Buchmann Edward Eaton Gus Gutoski Juliane Krämer Patrick Longa Harun Polat Jefferson E. Ricardini Gustavo Zanon

Ondokuz Mayis University, Turkey

University of Washington Tacoma, USA TU Darmstadt, Germany TU Darmstadt, Germany ISARA Corporation, Canada ISARA Corporation, Canada TU Darmstadt, Germany Microsoft Research, USA TU Darmstadt, Germany University of São Paulo, Brazil University of São Paulo, Brazil

EverCrypt as a **foundation** for verified software

- EverCrypt = a building block
- Why just limit ourselves to TLS?
- Several artifacts have been developed on top of EverCrypt

shields clients from conflicting, disparate specifications in favor of crisp, unified cryptographic constructions "The cryptographic toolbox one needs to implement QUIC".

A custom provider: libquiccrypto

A complete component: Merkle tree

• Used to verify integrity of a large number of blocks

PASSED

- Needs a hash algorithm
- Needs the fastest hash for the give platform
- Proof of collision resistance by reduction

CCF uses EverCrypt

(Build 2019)

The Confidential Consortium Framework

codecov

81%

Azure Pipelines succeeded

By Azaghal - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=18157888

docs microsoft.github.io/CCF

A full-fledged protocol: Signal*

- Secure communications protocol
- Used by: WhatsApp, Facebook Messenger, Signal, Skype
- Sophisticated cryptography: X3DH, double-ratched
- Forward secrecy, post-compromise security, etc. etc.

A verified implementation compiled to C and ...

A whole new target for EverCrypt: WASM

- Shipped in all major browsers (including Edge)
- WASM delivers portability and performance
- LLVM backend ("emscripten")

Opportunity:

- Desktop applications are running on a **web framework** like Electron (e.g. Skype, Signal, VS Code, Atom, WhatsApp)
- Framework support for cryptography is **lacking** (WebCrypto on the web, node.js crypto on the desktop)

A WASM backend for KreMLin:

- Auditable and delivers competitive performance
- An alternative, faster, less trustworthy backend: Low* -> C (via KreMLin) -> WASM (via LLVM)
- EverCrypt for the web: enables instant access to the latest cryptographic primitives on both Desktop & Web

Applications already:

Use the WASM backend of KreMLin for verified, fast implementation of messaging protocols, including Signal (IEEE S&P 2019)

A vision for EverCrypt

- An industrial-grade crypto provider is now a reality
 - already adopted
 - demonstrates OpenSSL's libcrypto is no longer inevitable
- Peer pressure to use verified code (good)
 - blockchains pushing for formal verification
 - skepticism of crypto is high (backdoors? magic constants? Russian S-BOX?)
 - open-source more nimble (Linux, BoringSSL, Firefox)
- EverCrypt is at the **forefront**
 - breadth and scale of the verification effort
 - With other folks in the same space: MIT, Galois, Amazon
- Prediction: at the five-year horizon, unverified crypto will be a liability

