
Thanks to Jonathan Protzenko and
Chris Hawblitzel for these slides.

Errors are mine

Nik Swamy, OPLSS 2019

miTLS 1.3

EverCrypt

HACL*
(Poly1305, Curve25519,

Chacha20, etc.)

ValeCrypt
(Poly1305, Curve25519)

EverParse

today’s

focus

What is a
cryptographic
provider?

A COLLECTION OF
ALGORITHMS (EXHAUSTIVE)

SEVERAL IMPLEMENTATIONS
(MULTIPLEXING)

APIS GROUPED BY FAMILY
(AGILITY)

EASY-TO-USE API
(CPU AUTO-DETECTION)

An essential piece of software

A cryptographic provider is useful beyond secure communications, e.g.

• file encryption

• secure enclaves

• document signatures

• cryptocurrencies

• any modern piece of software

What is a cryptographic provider?

A brief reminder: why verify
cryptographic algorithms?

AES-GCM

“the math”

Distilling the math for implementors

“the algorithm”

Writing the actual code

“the reality”

What could possibly go
wrong?

Many bugs in Curve25519 implementations
(C and assembly)

Curve25519-donna TweetNaCl

NaCl (asm)

3 Bugs in OpenSSL implementation
of Poly1305 last year

12

Low*

Implementation bug in AES-GCM

Implementation bug in Windows SymCrypt

Potential DDOS.

Program verification!

Specification
(“the mathematical truth”)

via ocaml
spec-test.exe
(“testable specification”)

Pseudo-code
(“implementation blueprint”)

proof

Vale/F*
(“assembly-like”)

proof

Vale
Low*
(“C-like”)

proof

Assembly (.asm) C code (.c, .h)

via Vale
printer

via KreMLin
compiler

What is verified?

Memory- and type-safety. Mitigates buffer overruns, dangling pointers, code injections. No undefined behavior.

Our fast implementations behave precisely as our simpler specifications.

Access to secrets, including crypto keys and private app data is restricted according to design.

What do we verify?

Each application can do custom proofs beyond functional correctness and safety:
- non malleability (parsers)
- crypto games (TLS)
- security reduction (Merkle Trees)
- etc. etc.

same sentiment on: Hacker News, Reddit, Slashdot, twitter, etc.

• The private signing key must remain private and not used in other protocols

• We assume security for core crypto algorithms, based on hard problems.

• Our detailed models are designed to exclude all known attacks,
but may be blind to new classes of attack (hardware faults,…)

• Our TCB includes Z3, Kremlin, C compilers… Efforts to reduce it are under way.

Will Everest be perfectly secure? No.

The Essence of EverCrypt

EverCrypt: no excuses industrial-grade crypto
library, with full verification

Vale/F*
(“assembly-like”)

Low*
(“C-like”)

EverCrypt

- A single artifact for clients to use
- State-of-the-art performance
- A single verification result (Vale or Low*)
- Deep integration for seamless interop
- Total abstraction for clients

Algorithm C version ASM version Agile API

AES-GCM ✔ (AESNI) ✔

ChachaPoly ✔ ✔

MD5, SHA1 ✔ ✔

SHA2 ✔ ✔ (SHAEXT) ✔

SHA3 ✔

Blake2 ✔

HMAC ✔ ✔

HKDF ✔ ✔

Curve25519 ✔ ✔ (BMI2 + ADX)

Ed25519 ✔

Chacha20 ✔

AES 128, 256 ✔

AES-CTR ✔

Poly1305 ✔ (+ AVX + AVX2) ✔ (X64)

One algorithm, several implementations
(multiplexing)

- Verifies multiple implementations (Vale &
Low*) against one specification

- Isolates clients from processor and target
details

- Auto-detects static & dynamic features

- Eliminates illegal instruction errors

- Expected by an industrial-grade library

Several algorithms, one API
(agility)

- Verifies that multiple algorithms fit the
same family of specifications

- Allows clients to switch between
algorithms (crucial for TLS)

- Uses F* meta-programming to templatize
the code

- Expected by an industrial-grade library

Deep integration between C and ASM
(speed)

Verification allows more optimizations and does not compromise speed.

Mundane parts of the algorithms are written in Low* while critical bits are in Vale.

A new verified interop layer ensures sound interoperation between two languages.

HACL* (C) Vale (ASM)

EverCrypt (C API)

Signal* Merkle treeC client

cryptographic providers

agile, multiplexing library

clients (+ libquiccrypto, miTLS, etc.)

EverCrypt seals the abstraction, meaning verified clients
are shielded from underlying verification details.

A foundation for verified apps
(abstraction)

A significant verification effort

Verified Assembly Language
in Vale / F*

We have a fast verified AES-GCM

Ironclad Apps SHA256
Andrew Appel SHA256

HACL* ChachaPoly
Vale AES-CBC+Poly1305

Vale AES-GCM-128

Jasmin ChaCha20 + Poly1305

Vale AES-GCM-128

0

1

2

3

4

5

6

7

2013 2014 2015 2016 2017 2018 2019 2020

G
B

/s

Year

Performance of various verified symmetric crypto / hash implementations

Optimizing AES-GCM

init-
hash

ciphertext1 ciphertext2 ciphertext3

add

mul

mod

secret

P

add

mul

mod

secret

P

add

mul

mod

secret

P

Important optimizations:
- delay mod operations
- parallelize add/mul operations
- math+bitwise tricks for mod
- careful instruction scheduling

add

mul

mod

secret

P

ciphertext

Vale: extensible, automated
assembly language verification

machine model (F*)

type reg = Rax | Rbx| ...
type ins =
| Mov(dst:reg, src:reg)
| Add(dst:reg, src:reg)
| Neg(dst:reg)
…

instructions

eval(Mov(dst, src), …) = …
eval(Add(dst, src), …) = …
eval(Neg(dst), …) = …
…

semantics

print(Mov(dst, src), …) =
“mov “ + (…dst) + (…src)

print(Add(dst, src), …) = …
…

code generation

Vale code

procedure mov(…)
requires …
ensures …

{ … }

procedure add(…)
…

machine interface

procedure Triple() …
requires rax < 100;
ensures

rbx == 3 * old(rax);
{
mov(rbx, rax);
add(rax, rbx);
add(rbx, rax);

}

program[Mov(r1, r0),
Add(r1, r0),
Add(r1, r1)]

lemma_mov(…);
lemma_add(…);
lemma_add(…);

code lemma

Trusted
Computing
Base

Vale: extensible, automated
assembly language verification

machine model (F*)

type reg = r0 | r1 | ...
type ins =

Mov(dst:reg, src:reg)
| Add(dst:reg, src:reg)
| Neg(dst:reg)
…

instructions

eval(Mov(dst, src), …) = …
eval(Add(dst, src), …) = …
eval(Neg(dst), …) = …
…

semantics
[Mov(r1, r0),
Add(r1, r0),
Add(r1, r1)]

lemma_mov(…);
lemma_add(…);
lemma_add(…);

code lemma

… verification condition …

Verification condition

procedure Triple()
requires rax < 100;
ensures

rbx == 3 * rax;
{

Move(rbx, rax); // --> rbx1

Add(rax, rbx); // --> rax2

Add(rbx, rax); // --> rbx3

}

verification condition
rax0 < 100
|-
(rbx1 == rax0 ==>
rax0 + rbx1 < 264 /\ (rax2 == rax0+ rbx1 ==>
rbx1 + rax2 < 264 /\ (rbx3 == rbx1 + rax2 ==>
rbx3 == 3 * rax0)))

1
2
3

Ugh! Default SMT query looks awful!
verification condition we want:
………………………. (rax2 == rax0+ rbx1 ==>
rbx1 + rax2 < 264 ………………………………….

verification condition we get:
…
(forall (ghost_result_0:(state * fuel)).

(let (s3, fc3) = ghost_result_0 in
eval_code (Ins (Add64 (OReg (Rax)) (OReg (Rbx)))) fc3 s2 == Some s3 /\
eval_operand (OReg Rax) s3 == eval_operand (OReg Rax) s2 + eval_operand (OReg Rbx) s2 /\
s3 == update_state (OReg Rax).r s3 s2) ==>

lemma_Add s2 (OReg Rax) (OReg Rbx) == ghost_result_0 ==>
(forall (s3:state) (fc3:fuel). lemma_Add s2 (OReg Rax) (OReg Rbx) == Mktuple2 s3 fc3 ==>

Cons? codes_Triple.tl /\
(forall (any_result0:list code). codes_Triple.tl == any_result0 ==>

(forall (any_result1:list code). codes_Triple.tl.tl == any_result1 ==>
OReg? (OReg Rbx) /\ eval_operand (OReg Rbx) s3 + eval_operand (OReg Rax) s3 < 264

...

Let's write our own VC generator!

verification condition we want:
………………………. (rax2 == rax0+ rbx1 ==>
rbx1 + rax2 < 264 ………………………………….

• But won't it be part of TCB?

• And how do we interact with F*?

• Can we reuse F* features and libraries?

• ??? Maybe like this: ???
Our own Vale
VC generatorI'm lonely

and sad.

procedure Triple() …
…

Let's write our own VC generator!

verification condition we want:
………………………. (rax2 == rax0+ rbx1 ==>
rbx1 + rax2 < 264 ………………………………….

• Part of TCB? No -- we verify its soundness in F*

• Interact with F*? Yes

• Reuse F* features and libraries? Yes

• Like this!
Our own Vale
VC generator,

written in F*,
run by F*'s interpreter during type checking

I'm happy.

procedure Triple() …
…

Let's write our own VC generator!

verification condition we want:
…………………(rax2 == rax0+ rbx1 ==>

rbx1 + rax2 < 264 ……………………….

Our own Vale
VC generator,

written in F*,
run by F*'s interpreter

procedure Triple() …
…

A big string?

A datatype:
type quickCode = ...
type quickCodes =
| QEmpty
| QSeq of quickCode * quickCodes ...
| QLemma of ... (Lemma pre post) * ...

Like our earlier code AST,
but with assertions, lemma calls,
ghost variables, etc.

A big string?
A datatype?

An F* term:
(forall rbx1. rbx1 == rax0 ==>

rax0 + rbx1 < 264 /\
(forall rax2. rax2 == rax0+ rbx1 ==>

rbx1 + rax2 < 264 /\ …

Demo

• Verification condition generation for Vale

Optimizing Curve25519

procedure fmul1(...)...

lets dst_ptr @= rdi; inA_ptr @= rsi; b @= rdx;

requires adx_enabled && bmi2_enabled && ...

ensures ...

{

fast_mul1(0, inA_b); ... Mov64(b, 38);

carry_pass(false, 0, dst_b);

}

val fmul1 (dst:u256) (a:u256) (b:uint64{v f2 < pow2 17}) :

Stack unit

(requires fun h -> adx_enabled /\ bmi2_enabled /\ ...)

(ensures ...)

match s with

| M51 -> F51.fmul1 out f1 f2

| M64 -> F64.fmul1 out f1 f2

Demo: Interop between Vale and Low*

Conclusions

• We've verified fast assembly language crypto implementations:
• SHA
• Poly1305
• AES-GCM
• Curve25519

• Expressive logics + SMT automation
• We wrote our own domain-specific VC generator

• We proved it sound

• We run it from with F*'s type checker, and verification is fast

• What other opportunities are there?

https://project-everest.github.io/

https://project-everest.github.io/

Deployments and applications

Level 1: cherry-pick approach

Example: Linux Kernel (ZINC).
- Kernel already has multiplexing and CPU
auto-detection facilities.

- Taking EverCrypt Curve25519 (C/ASM)

- Also took Fiat crypto

- They want algorithms we don’t yet have

Also in that category: Firefox

The latter project takes the approach of modeling the
algorithm in F* and proving the model correct, which F*
is designed to optimize. Then — in a term of art which
never fails to make me think of Arnold
Schwarzenegger's Terminator descending into a bath
of molten metal — the model is "lowered into" C (or in
some cases, all the way into assembly language).
According to Donenfeld, this produces C which, though
slightly non-idiomatic, is surprisingly readable, and
much more likely to be bug-free than human-written
code. It also produces some of the fastest C
implementations that exist, which he suspects is
because the formal verification process removes certain
things that are not obviously removable when you're
working the mathematics out by hand.

https://www.fstar-lang.org/

Level 2: the whole library

• Easiest approach: just take the whole directory

• Expectations are higher for security-related applications

• Beneficial peer pressure

Examples: Concordium &
Tezos blockchains, remote
attestation (UC Irvine)

Level 3: extend

• Formal verification an advantage for standards competitions (NIST)

• Post-quantum algorithms:
qTESLA, Frodo

EverCrypt as a foundation for verified software

• EverCrypt = a building block

• Why just limit ourselves to TLS?

• Several artifacts have been developed on top of EverCrypt

shields clients from conflicting, disparate specifications in favor of crisp,
unified cryptographic constructions

A custom provider: libquiccrypto

“The cryptographic toolbox one needs to implement QUIC”.

HACL* Vale

libquiccryto (C)

HACL* Vale

EverCrypt (Low*)

libquiccrypto (Low*)

ad-hoc calls

before after

✅memory safety

✅ functional
correctness

✅ cryptographic
model

A complete component: Merkle tree

• Used to verify integrity of a large number of blocks

• Needs a hash algorithm

• Needs the fastest hash for the give platform

• Proof of collision resistance by reduction

By Azaghal - Own work, CC0,
https://commons.wikimedia.org/w/index.php?curid=18157888

CCF uses EverCrypt

(Build 2019)

A full-fledged protocol: Signal*

• Secure communications protocol

• Used by: WhatsApp, Facebook Messenger, Signal, Skype

• Sophisticated cryptography: X3DH, double-ratched

• Forward secrecy, post-compromise security, etc. etc.

A verified implementation compiled to C and ...

A whole new target for EverCrypt: WASM

- Shipped in all major browsers (including Edge)
- WASM delivers portability and performance
- LLVM backend (“emscripten”)

Opportunity:
- Desktop applications are running on a web framework like Electron (e.g. Skype, Signal, VS Code, Atom, WhatsApp)
- Framework support for cryptography is lacking (WebCrypto on the web, node.js crypto on the desktop)

A WASM backend for KreMLin:
- Auditable and delivers competitive performance
- An alternative, faster, less trustworthy backend: Low* -> C (via KreMLin) -> WASM (via LLVM)
- EverCrypt for the web: enables instant access to the latest cryptographic primitives on both Desktop & Web

Applications already:
- Use the WASM backend of KreMLin for verified, fast implementation of messaging protocols, including Signal (IEEE

S&P 2019)

A vision for EverCrypt

• An industrial-grade crypto provider is now a reality
• already adopted

• demonstrates OpenSSL’s libcrypto is no longer inevitable

• Peer pressure to use verified code (good)
• blockchains pushing for formal verification

• skepticism of crypto is high (backdoors? magic constants? Russian S-BOX?)

• open-source more nimble (Linux, BoringSSL, Firefox)

• EverCrypt is at the forefront
• breadth and scale of the verification effort

• With other folks in the same space: MIT, Galois, Amazon

• Prediction: at the five-year horizon, unverified crypto will be a liability

